Electrochemical Reduction of Carbon Dioxide to Formic Acid

This Review provides an overview of electrochemical techniques that are implemented in addressing gaseous CO2 towards the synthesis of a particular fuel (i.e. formic acid). The electrochemical reaction mechanism, as well as the advancement of electrodes, catalyst materials, and reactor designs are reviewed and discussed. To date, the electrolytic cell is the dominant reaction site and, based on which, various catalysts have been proposed and researched. In addition, relevant work regarding reactor design optimization for the purpose of alleviating restrictions of the current CO2 electrochemical reduction system are summarized, including low reactant-transfer rate, high reaction overpotential, and low product selectivity. The use of microfluidic techniques to build microscale electrochemical reactors is identified to be highly promising to largely increase the electrochemical performance. Finally, future challenges and opportunities of electrochemical reduction of CO2 are discussed.

[1]  C. M. White,et al.  Separation and Capture of CO2 from Large Stationary Sources and Sequestration in Geological Formations—Coalbeds and Deep Saline Aquifers , 2003, Journal of the Air & Waste Management Association.

[2]  Y. Hori,et al.  Product Selectivity Affected by Cationic Species in Electrochemical Reduction of CO2 and CO at a Cu Electrode , 1991 .

[3]  P. Kenis,et al.  Prospects of CO2 Utilization via Direct Heterogeneous Electrochemical Reduction , 2010 .

[4]  Daniel Tondeur,et al.  Efficiency of Carbon storage with leakage: Physical and economical approaches , 2007 .

[5]  R. Barkley,et al.  Electrochemical Reduction of CO2 Catalyzed by Small Organophosphine Dendrimers Containing Palladium , 1994 .

[6]  Andrew B. Bocarsly,et al.  Selective solar-driven reduction of CO2 to methanol using a catalyzed p-GaP based photoelectrochemical cell. , 2008, Journal of the American Chemical Society.

[7]  E. Fujita,et al.  Toward more efficient photochemical CO2 reduction: Use of scCO2 or photogenerated hydrides , 2010 .

[8]  K. Hara,et al.  High Efficiency Electrochemical Reduction of Carbon Dioxide under High Pressure on a Gas Diffusion Electrode Containing Pt Catalysts , 1995 .

[9]  D. Dubois,et al.  Electrochemical Reduction of CO2 to CO Catalyzed by a Bimetallic Palladium Complex , 2006 .

[10]  Jean-Michel Savéant,et al.  Mechanism of the electrochemical reduction of carbon dioxide at inert electrodes in media of low proton availability , 1996 .

[11]  B. P. Sullivan,et al.  Electrocatalytic reduction of carbon dioxide by 2,2'-bipyridine complexes of rhodium and iridium , 1988 .

[12]  Akira Okumura,et al.  Preparation of cu-solid polymer electrolyte composite electrodes and application to gas-phase electrochemical reduction of CO2 , 1995 .

[13]  Yumei Zhai,et al.  The electrochemical reduction of carbon dioxide to formate/formic acid: engineering and economic feasibility. , 2011, ChemSusChem.

[14]  Zhenshanl Li,et al.  Electrochemical reduction of carbon dioxide in an MFC-MEC system with a layer-by-layer self-assembly carbon nanotube/cobalt phthalocyanine modified electrode. , 2012, Environmental science & technology.

[15]  David R. Manke,et al.  Oxygen and hydrogen photocatalysis by two-electron mixed-valence coordination compounds , 2005 .

[16]  J. Greener,et al.  Temperature-controlled 'breathing' of carbon dioxide bubbles. , 2011, Lab on a chip.

[17]  E. Shock,et al.  Formate as an energy source for microbial metabolism in chemosynthetic zones of hydrothermal ecosystems. , 2007, Astrobiology.

[18]  S. Sakaki,et al.  Theoretical study of rhodium(III)-catalyzed hydrogenation of carbon dioxide into formic acid. Significant differences in reactivity among rhodium(III), rhodium(I), and ruthenium(II) complexes. , 2002, Journal of the American Chemical Society.

[19]  A. Wragg,et al.  Effects of process conditions and electrode material on reaction pathways for carbon dioxide electroreduction with particular reference to formate formation , 2003 .

[20]  W. Leitner,et al.  CO2 Activation. 7.† Formation of the Catalytically Active Intermediate in the Hydrogenation of Carbon Dioxide to Formic Acid Using the [{(COD)Rh(μ-H)}4]/Ph2P(CH2)4PPh2 Catalyst: First Direct Observation of Hydride Migration from Rhodium to Coordinated 1,5-Cyclooctadiene , 1996 .

[21]  Masami Shibata,et al.  High performance RuPd catalysts for CO2 reduction at gas-diffusion electrodes , 1997 .

[22]  B. Han,et al.  Hydrogenation of CO2 to formic acid promoted by a diamine-functionalized ionic liquid. , 2009, ChemSusChem.

[23]  M. N. Mahmood,et al.  Use of gas-diffusion electrodes for high-rate electrochemical reduction of carbon dioxide. II. Reduction at metal phthalocyanine-impregnated electrodes , 1987 .

[24]  Hongxia Wang,et al.  Electrochemical activation of carbon dioxide for synthesis of dimethyl carbonate in an ionic liquid , 2009 .

[25]  Hui Li,et al.  The Electro-Reduction of Carbon Dioxide in a Continuous Reactor , 2005 .

[26]  G. Centi,et al.  Opportunities and prospects in the chemical recycling of carbon dioxide to fuels , 2009 .

[27]  Tohru S. Suzuki,et al.  Electrochemical Reduction of CO2 to Methane at the Cu Electrode in Methanol with Sodium Supporting Salts and Its Comparison with Other Alkaline Salts , 2006 .

[28]  Toshio Tanaka,et al.  Selective formation of HCOO– in the electrochemical CO2 reduction catalysed by [Ru(bpy)2(CO)2]2+(bpy = 2,2′-bipyridine) , 1987 .

[29]  Walter Leitner,et al.  Carbon Dioxide as a Raw Material: The Synthesis of Formic Acid and Its Derivatives from CO2 , 1995 .

[30]  J. Lehn,et al.  Efficient photochemical reduction of CO2 to CO by visible light irradiation of systems containing Re(bipy)(CO)3X or Ru(bipy)32+–Co2+ combinations as homogeneous catalysts , 1983 .

[31]  Shi-gang Lu,et al.  Electroreduction of carbon dioxide on palladium electrodes at potentials higher than the reversible hydrogen potential , 1994 .

[32]  A. Deronzier,et al.  Electrocatalytic reduction of CO2 into formate with [(η5Me5C5)M(L)Cl]+ complexes (L = 2,2′-bipyridine ligands; M Rh(III) and Ir(III)) , 1997 .

[33]  Ryoji Noyori,et al.  Homogeneous Hydrogenation of Carbon Dioxide , 1995 .

[34]  G. Maurer,et al.  Solubility of CO2 in (CH3OH + H2O) , 2004 .

[35]  Yoshio Hori,et al.  Electrochemical Reduction of Carbon Dioxide at a Platinum Electrode in Acetonitrile‐Water Mixtures , 2000 .

[36]  Devin T. Whipple Microfluidic reactor for the electrochemical reduction of carbon dioxide , 2010 .

[37]  John Newman,et al.  Design of an Electrochemical Cell Making Syngas ( CO + H2 ) from CO2 and H2O Reduction at Room Temperature , 2007 .

[38]  Li Zhang,et al.  Energy and exergy analysis of microfluidic fuel cell , 2013 .

[39]  P. Jessop,et al.  HOMOGENEOUS CATALYSIS IN SUPERCRITICAL FLUIDS : HYDROGENATION OF SUPERCRITICAL CARBON DIOXIDE TO FORMIC ACID, ALKYL FORMATES, AND FORMAMIDES , 1996 .

[40]  Kiyotsuna Toyohara,et al.  Ruthenium Formyl Complexes as the Branch Point in Two- and Multi-Electron Reductions of CO2 , 1995 .

[41]  Shimshon Gottesfeld,et al.  Methanol transport through Nafion membranes : Electro-osmotic drag effects on potential step measurements , 2000 .

[42]  Bob van der Zwaan,et al.  CO2 Capture and Storage with Leakage in an Energy-Climate Model , 2009 .

[43]  H. Eyring,et al.  Kinetic studies of the electrolytic reduction of carbon dioxide on the mercury electrode , 1969 .

[44]  Thomas J. Meyer,et al.  Chemical approaches to artificial photosynthesis , 1989 .

[45]  Katsuhei Kikuchi,et al.  Production of CO and CH4 in electrochemical reduction of CO2 at metal electrodes in aqueous hydrogencarbonate solution. , 1985 .

[46]  Ronald L. Cook,et al.  High Rate Gas Phase CO 2 Reduction to Ethylene and Methane Using Gas Diffusion Electrodes , 1990 .

[47]  A. Spek,et al.  Electrocatalytic CO2 Conversion to Oxalate by a Copper Complex , 2010, Science.

[48]  Jie Chang,et al.  Simulation Analysis of a GTL Process Using Aspen Plus , 2008 .

[49]  Emily Barton Cole,et al.  Using a one-electron shuttle for the multielectron reduction of CO2 to methanol: kinetic, mechanistic, and structural insights. , 2010, Journal of the American Chemical Society.

[50]  M. Hidai,et al.  Electroreduction of carbon dioxide catalyzed by iron-sulfur cluster compounds [Fe4S4(SR)4]2- , 1982 .

[51]  M. N. Mahmood,et al.  Use of gas-diffusion electrodes for high-rate electrochemical reduction of carbon dioxide. I. Reduction at lead, indium- and tin-impregnated electrodes , 1987 .

[52]  Pu-Wei Wu,et al.  Facile Electrochemical Fabrication of Large-Area ZnO Inverse Opals with Reduced Defects , 2011 .

[53]  J. Bockris,et al.  Effect of a Finite‐Contact‐Angle Meniscus on Kinetics in Porous Electrode Systems , 1969 .

[54]  K. S. Udupa,et al.  The electrolytic reduction of carbon dioxide to formic acid , 1971 .

[55]  B. Berne,et al.  Why is the partial molar volume of CO2 so small when dissolved in a room temperature ionic liquid? Structure and dynamics of CO2 dissolved in [Bmim+] [PF6(-)]. , 2005, Journal of the American Chemical Society.

[56]  D. Lowy,et al.  Electrochemical reduction of carbon dioxide on flat metallic cathodes , 1997 .

[57]  Toshio Tsukamoto,et al.  Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media , 1994 .

[58]  S. Kuwabata,et al.  Electrochemical Conversion of Carbon Dioxide to Methanol with Use of Enzymes as Biocatalysts , 1993 .

[59]  N. Bruce,et al.  Cofactor-dependent enzyme catalysis in functionalized ionic solvents. , 2004, Chemical communications.

[60]  M. Aresta Carbon Dioxide: Utilization Options to Reduce its Accumulation in the Atmosphere , 2010 .

[61]  Hari C. Mantripragada,et al.  CO2 reduction potential of coal-to-liquids (CTL) plants , 2009 .

[62]  Ronald L. Cook,et al.  On the Electrochemical Reduction of Carbon Dioxide at In Situ Electrodeposited Copper , 1988 .

[63]  Susumu Kuwabata,et al.  Electrochemical conversion of carbon dioxide to methanol with the assistance of formate dehydrogenase and methanol dehydrogenase as biocatalysts , 1994 .

[64]  A. Klibanov,et al.  Enzymatic synthesis of formic acid from H2 and CO2 and production of hydrogen from formic acid , 1982, Biotechnology and bioengineering.

[65]  J. Lehn,et al.  Photochemical reduction of carbon dioxide to formate catalyzed by 2,2t́-bipyridine- or 1,10-phenanthroline-ruthenium(II) complexes , 1990 .

[66]  G. Olah,et al.  Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons. , 2009, The Journal of organic chemistry.

[67]  T. Reda,et al.  Reversible interconversion of carbon dioxide and formate by an electroactive enzyme , 2008, Proceedings of the National Academy of Sciences.

[68]  Colin Finn,et al.  Molecular approaches to the electrochemical reduction of carbon dioxide. , 2012, Chemical communications.

[69]  Akihiko Kudo,et al.  Electrochemical reduction of carbon dioxide under high pressure on various electrodes in an aqueous electrolyte , 1995 .

[70]  S. Simon,et al.  Solubility of carbon dioxide in lipid bilayer membranes and organic solvents. , 1980, Biochimica et biophysica acta.

[71]  K. W. Frese,et al.  Electrochemical Reduction of Carbon Dioxide to Methane, Methanol, and CO on Ru Electrodes , 1985 .

[72]  S. Ha,et al.  Direct formic acid fuel cells , 2002 .

[73]  Bhupendra Kumar,et al.  Photochemical and photoelectrochemical reduction of CO2. , 2012, Annual review of physical chemistry.

[74]  M. Winter,et al.  Fluorosulfonyl-(trifluoromethanesulfonyl)imide ionic liquids with enhanced asymmetry. , 2013, Physical chemistry chemical physics : PCCP.

[75]  Thomas Schaub,et al.  Ein Verfahren zur Herstellung von Ameisensäure durch CO2-Hydrierung: Thermodynamik und die Rolle von CO† , 2011 .

[76]  K. Ohta,et al.  Electrochemical conversion of carbon dioxide to formic acid on Pb in KOH/methanol electrolyte at ambient temperature and pressure , 1998 .

[77]  Xingwen Yu,et al.  Recent advances in direct formic acid fuel cells (DFAFC) , 2008 .

[78]  Paul J. A. Kenis,et al.  Electrochemical conversion of CO2 to useful chemicals: current status, remaining challenges, and future opportunities , 2013 .

[79]  G. Centi,et al.  Nanostructured Electrodes and Devices for Converting Carbon Dioxide Back to Fuels: Advances and Perspectives , 2011 .

[80]  A. Schumpe,et al.  Gas Solubilities in Aqueous Solutions of Organic Substances , 1996 .

[81]  Manfred Rudolph,et al.  Macrocyclic [N42-] Coordinated Nickel Complexes as Catalysts for the Formation of Oxalate by Electrochemical Reduction of Carbon Dioxide , 2000 .

[82]  Björn Loges,et al.  Kontrollierte Wasserstofferzeugung aus Ameisensäure‐Amin‐Addukten bei Raumtemperatur und direkte Nutzung in H2/O2‐Brennstoffzellen , 2008 .

[83]  Christian Amatore,et al.  Mechanism and kinetic characteristics of the electrochemical reduction of carbon dioxide in media of low proton availability , 1981 .

[84]  G. Pilloni,et al.  Electrochemistry of coordination compounds: II. Electrochemical reduction of di-(1,2-bisdiphenylphos-phinoethane)M(I) chloride: A new route to hydrido di-(1,2-bisdiphenylphosphinoethane)M(I) (M=Rh, Ir) , 1973 .

[85]  T. Meyer,et al.  Selective electrocatalytic reduction of CO2 to formate by water-stable iridium dihydride pincer complexes. , 2012, Journal of the American Chemical Society.

[86]  Michele Aresta Perspectives in the use of carbon dioxide , 1999 .

[87]  S. Sakaki,et al.  Ruthenium(II)-catalyzed hydrogenation of carbon dioxide to formic acid. Theoretical study of real catalyst, ligand effects, and solvation effects. , 2005, Journal of the American Chemical Society.

[88]  H. Eyring,et al.  Electrode reduction kinetics of carbon dioxide in aqueous solution , 1972 .

[89]  L. Zhang,et al.  Electrochemical activation of CO2 in ionic liquid (BMIMBF4): synthesis of organic carbonates under mild conditions , 2008 .

[90]  Mikael Höök,et al.  A review on coal‐to‐liquid fuels and its coal consumption , 2010 .

[91]  R. Ludwig,et al.  Efficient Dehydrogenation of Formic Acid Using an Iron Catalyst , 2011, Science.

[92]  G. Maurer,et al.  Solubility of CO2 in the Ionic Liquids [bmim][CH3SO4] and [bmim][PF6] , 2006 .

[93]  P. Kurzweil,et al.  Electrochemical stability of organic electrolytes in supercapacitors: Spectroscopy and gas analysis of decomposition products , 2008 .

[94]  S. Slater,et al.  Electrochemical reduction of carbon dioxide catalyzed by Rh(diphos)2Cl , 1984 .

[95]  Thomas Schaub,et al.  A process for the synthesis of formic acid by CO2 hydrogenation: thermodynamic aspects and the role of CO. , 2011, Angewandte Chemie.

[96]  Richard L. Kurtz,et al.  Electrochemical Reduction of CO2 to CH3OH at Copper Oxide Surfaces , 2011 .

[97]  Y. Hori,et al.  Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution , 1990 .

[98]  R. M. Barrer The viscosity of pure liquids. II. Polymerised ionic melts , 1943 .

[99]  R. Richardson,et al.  A renewable amine for photochemical reduction of CO(2). , 2011, Nature chemistry.

[100]  Fatih Köleli,et al.  Electrochemical reduction of CO2 at Pb- and Sn-electrodes in a fixed-bed reactor in aqueous K2CO3 and KHCO3 media , 2003 .

[101]  W. Leitner Kohlendioxid als Rohstoff am Beispiel der Synthese von Ameisensäure und ihren Derivaten , 1995 .

[102]  Y. Hori,et al.  Electrochemical CO 2 Reduction on Metal Electrodes , 2008 .

[103]  G. Centi,et al.  Nanostructured electrocatalytic Pt-carbon materials for fuel cells and CO2 conversion , 2007 .

[104]  A. Sasaki,et al.  Effect of temperature on electrochemical reduction of high-pressure CO2 with In, Sn, and Pb electrodes , 1995 .

[105]  Akira Naitoh,et al.  Electrochemical reduction of carbon dioxide in methanol at low temperature , 1993 .

[106]  K. W. Frese,et al.  The electrochemical reduction of aqueous carbon dioxide to methanol at molybdenum electrodes with low overpotentials , 1986 .

[107]  K. Ohta,et al.  Electrochemical reduction of carbon dioxide to ethylene with high Faradaic efficiency at a Cu electrode in CsOH/methanol , 1999 .

[108]  Eugenia Kumacheva,et al.  A microfluidic route to small CO2 microbubbles with narrow size distribution , 2010 .

[109]  Koji Tanaka,et al.  Multi-electron reduction of CO2 via RuCO2, C(O)OH, CO, CHO, and CH2OH species , 2002 .

[110]  Anne C. Co,et al.  A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper , 2006 .

[111]  Akira Fujishima,et al.  Production of syngas plus oxygen from CO2 in a gas-diffusion electrode-based electrolytic cell , 2002 .

[112]  Gorou Arai,et al.  Selective Electrocatalytic Reduction of Carbon Dioxide to Methanol on Ru-modified Electrode , 1989 .

[113]  K. Hara,et al.  Large Current Density CO2 Reduction under High Pressure Using Gas Diffusion Electrodes. , 1997 .

[114]  Iwao Omae,et al.  Aspects of carbon dioxide utilization , 2006 .

[115]  K. Heinze,et al.  Multielectron Storage and Photo‐Induced Electron Transfer in Oligonuclear Complexes Containing Ruthenium(II) Terpyridine and Ferrocene Building Blocks , 2006 .

[116]  D. Rauh,et al.  Molecular and biochemical characterization of two tungsten- and selenium-containing formate dehydrogenases from Eubacterium acidaminophilum that are associated with components of an iron-only hydrogenase , 2003, Archives of Microbiology.

[117]  D. Adhikari,et al.  Biomass-based energy fuel through biochemical routes: A review , 2009 .

[118]  K. Ohta,et al.  Electrochemical reduction of high pressure CO2 at a Cu electrode in cold methanol , 2006 .

[119]  C. Pham‐Huu,et al.  Fe and Pt carbon nanotubes for the electrocatalytic conversion of carbon dioxide to oxygenates , 2009 .

[120]  K. Hara,et al.  Electrochemical reduction of high pressure CO2 at Pb, Hg and In electrodes in an aqueous KHCO3 solution , 1995 .

[121]  Akira Saji,et al.  Electrochemical reduction of CO2 at an Ag electrode in KOH-methanol at low temperature , 1998 .

[122]  H. Yano,et al.  Electrochemical reduction of CO2 at three-phase (gas ∣ liquid ∣ solid) and two-phase (liquid ∣ solid) interfaces on Ag electrodes , 2002 .

[123]  H. B. Suffredini,et al.  Recent developments in electrode materials for water electrolysis , 2000 .

[124]  R. J. Marshall,et al.  A review of some recent electrolytic cell designs , 1985 .

[125]  Kaname Ito,et al.  Electrochemical Reduction of Carbon Dioxide at Various Metal Electrodes in Aqueous Potassium Hydrogen Carbonate Solution , 1990 .

[126]  Philip G. Jessop,et al.  Recent advances in the homogeneous hydrogenation of carbon dioxide , 2004 .

[127]  D. Leung,et al.  Modeling of a microfluidic electrochemical cell for CO2 utilization and fuel production , 2013 .

[128]  Kaname Ito,et al.  Selective Formation of Formic Acid, Oxalic Acid, and Carbon Monoxide by Electrochemical Reduction of Carbon Dioxide , 1987 .

[129]  A. Fletcher,et al.  Electrochemical Reduction Reactions Involving Formic Acid. , 1984 .

[130]  H. Yano,et al.  Selective electrochemical reduction of CO2 to ethylene at a three-phase interface on copper(I) halide-confined Cu-mesh electrodes in acidic solutions of potassium halides , 2004 .

[131]  R. Huber,et al.  Gene sequence and the 1.8 A crystal structure of the tungsten-containing formate dehydrogenase from Desulfovibrio gigas. , 2002, Structure.

[132]  J. Brennecke,et al.  Improving carbon dioxide solubility in ionic liquids. , 2007, The journal of physical chemistry. B.

[133]  S. Koide,et al.  Electroreduction of carbon dioxide by metal phthalocyanines , 1991 .

[134]  K. Ohta,et al.  Electrochemical reduction of carbon dioxide atTi and hydrogen-storing Ti electrodes inKOH–methanol , 1998 .

[135]  G. Maurer,et al.  Solubility of CO2 in the Ionic Liquid [bmim][PF6] , 2003 .

[137]  Matthias Beller,et al.  Controlled generation of hydrogen from formic acid amine adducts at room temperature and application in H2/O2 fuel cells. , 2008, Angewandte Chemie.

[138]  A. Baba,et al.  Reaction of carbon dioxide with oxetane catalyzed by organotin halide complexes: control of reaction by ligands , 1987 .