Studies on the Role of Entanglement in Mixed-state Quantum Computation
暂无分享,去创建一个
[1] I. S. Gradshteyn,et al. Table of Integrals, Series, and Products , 1976 .
[2] John Archibald Wyler. Rasputin, science, and the transmogrification of destiny , 1974 .
[3] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[4] D. Whittaker,et al. A Course in Functional Analysis , 1991, The Mathematical Gazette.
[5] Derek G. Corneil,et al. Complexity of finding embeddings in a k -tree , 1987 .
[6] Vaughan F. R. Jones,et al. On knot invariants related to some statistical mechanical models , 1989 .
[7] A. Ehrenfeucht,et al. The Computational Complexity of ({\it XOR, AND\/})-Counting Problems , 1990 .
[8] Pérès. Separability Criterion for Density Matrices. , 1996, Physical review letters.
[9] R. Jozsa,et al. Quantum Computation and Shor's Factoring Algorithm , 1996 .
[10] M. Horodecki,et al. Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.
[11] Sen. Average Entropy of a Quantum Subsystem. , 1996, Physical review letters.
[12] P. Horodecki. Separability criterion and inseparable mixed states with positive partial transposition , 1997, quant-ph/9703004.
[13] K. Życzkowski,et al. Composed ensembles of random unitary matrices , 1997, chao-dyn/9707006.
[14] Artur Ekert,et al. Quantum algorithms: entanglement–enhanced information processing , 1998, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[15] E. Knill,et al. Power of One Bit of Quantum Information , 1998, quant-ph/9802037.
[16] R. Jozsa,et al. SEPARABILITY OF VERY NOISY MIXED STATES AND IMPLICATIONS FOR NMR QUANTUM COMPUTING , 1998, quant-ph/9811018.
[17] C. Adami,et al. Quantum extension of conditional probability , 1999 .
[18] Umesh V. Vazirani,et al. Molecular scale heat engines and scalable quantum computation , 1999, STOC '99.
[19] C. H. Bennett,et al. Quantum nonlocality without entanglement , 1998, quant-ph/9804053.
[20] J. Cirac,et al. Separability and Distillability of Multiparticle Quantum Systems , 1999, quant-ph/9903018.
[21] D. DiVincenzo,et al. The Physical Implementation of Quantum Computation , 2000, quant-ph/0002077.
[22] J. A. Jones. NMR quantum computation , 2000 .
[23] Michael Larsen,et al. A Modular Functor Which is Universal¶for Quantum Computation , 2000, quant-ph/0001108.
[24] G. Vidal,et al. Approximate transformations and robust manipulation of bipartite pure-state entanglement , 1999, quant-ph/9910099.
[25] V. Vedral,et al. Classical, quantum and total correlations , 2001, quant-ph/0105028.
[26] M. Freedman,et al. Topological Quantum Computation , 2001, quant-ph/0101025.
[27] Raymond Laflamme,et al. Quantum computing and quadratically signed weight enumerators , 2001, Inf. Process. Lett..
[28] Lorenza Viola,et al. NMR quantum information processing and entanglement , 2002, Quantum Inf. Comput..
[29] MAXWELL’S DEMONS,et al. Quantum Discord and Maxwell's Demons , 2002 .
[30] M. Freedman,et al. Simulation of Topological Field Theories¶by Quantum Computers , 2000, quant-ph/0001071.
[31] G. Vidal,et al. Computable measure of entanglement , 2001, quant-ph/0102117.
[32] W. Zurek,et al. Quantum discord: a measure of the quantumness of correlations. , 2001, Physical review letters.
[33] G. Vidal. Efficient classical simulation of slightly entangled quantum computations. , 2003, Physical review letters.
[34] Sung Dahm Oh,et al. Convex-roof extended negativity as an entanglement measure for bipartite quantum systems , 2003, quant-ph/0310027.
[35] P. Diaconis. Patterns in eigenvalues: the 70th Josiah Willard Gibbs lecture , 2003 .
[36] Howard Barnum,et al. Separable balls around the maximally mixed multipartite quantum states , 2003 .
[37] A. J. Scott,et al. Entangling power of the quantum baker's map , 2003, quant-ph/0305046.
[38] R. Jozsa,et al. On the role of entanglement in quantum-computational speed-up , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[39] David Poulin,et al. Testing integrability with a single bit of quantum information , 2003 .
[40] F. Verstraete,et al. Separable States can be used to distribute entanglement. , 2003, Physical review letters.
[41] Leonid Gurvits. Classical deterministic complexity of Edmonds' Problem and quantum entanglement , 2003, STOC '03.
[42] G. Vidal,et al. Entanglement in quantum critical phenomena. , 2002, Physical review letters.
[43] Daniel A. Lidar. On the quantum computational complexity of the Ising spin glass partition function and of knot invariants , 2003, quant-ph/0309064.
[44] Seth Lloyd,et al. Pseudo-Random Unitary Operators for Quantum Information Processing , 2003, Science.
[45] Discrete phase space based on finite fields , 2004, quant-ph/0401155.
[46] R. Laflamme,et al. Exponential speedup with a single bit of quantum information: measuring the average fidelity decay. , 2003, Physical review letters.
[47] P. Parrilo,et al. Complete family of separability criteria , 2003, quant-ph/0308032.
[48] H. Zaraket,et al. Positive-operator-valued measure optimization of classical correlations (6 pages) , 2004 .
[49] Michael Zwolak,et al. Mixed-state dynamics in one-dimensional quantum lattice systems: a time-dependent superoperator renormalization algorithm. , 2004, Physical review letters.
[50] Michael A. Nielsen,et al. Quantum computing and polynomial equations over the finite field Z 2 , 2004 .
[51] A. Winter,et al. Communications in Mathematical Physics Structure of States Which Satisfy Strong Subadditivity of Quantum Entropy with Equality , 2022 .
[52] Estimation of the Local Density of States on a Quantum Computer , 2003, quant-ph/0308164.
[53] A. Datta,et al. Entanglement and the power of one qubit , 2005, quant-ph/0505213.
[54] Giacomo Mauro D'Ariano,et al. Classical randomness in quantum measurements , 2004, quant-ph/0408115.
[55] A. Winter,et al. Quantum, classical, and total amount of correlations in a quantum state , 2004, quant-ph/0410091.
[56] Seth Lloyd,et al. Convergence conditions for random quantum circuits , 2005, quant-ph/0503210.
[57] Nicolas Gisin,et al. Entanglement and non-locality are different resources , 2004, quant-ph/0412109.
[58] M. Horodecki,et al. Local versus nonlocal information in quantum-information theory: Formalism and phenomena , 2004, quant-ph/0410090.
[59] A. Kitaev,et al. Universal quantum computation with ideal Clifford gates and noisy ancillas (14 pages) , 2004, quant-ph/0403025.
[60] Tal Mor,et al. Quantum advantage without entanglement , 2005, SPIE Optics + Photonics.
[61] E. Galvão. Discrete Wigner functions and quantum computational speedup , 2004, quant-ph/0405070.
[62] Howard Barnum,et al. Better bound on the exponent of the radius of the multipartite separable ball (12 pages) , 2005 .
[63] E. Schrödinger. Die gegenwärtige Situation in der Quantenmechanik , 2005, Naturwissenschaften.
[64] M. Plenio. Logarithmic negativity: a full entanglement monotone that is not convex. , 2005, Physical review letters.
[65] Andris Ambainis,et al. Computing with highly mixed states , 2006, JACM.
[66] G. Vidal,et al. Classical simulation of quantum many-body systems with a tree tensor network , 2005, quant-ph/0511070.
[67] L. Masanes. All bipartite entangled states are useful for information processing. , 2005, Physical review letters.
[68] Daniel Gottesman,et al. Classicality in discrete Wigner functions , 2005, quant-ph/0506222.
[69] A. Winter,et al. Aspects of Generic Entanglement , 2004, quant-ph/0407049.
[70] William J. Munro,et al. Entanglement and its role in Shor's algorithm , 2006, Quantum Inf. Comput..
[71] Dan Shepherd. Computation with Unitaries and One Pure Qubit , 2006 .
[72] Thierry Paul,et al. Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.
[73] Animesh Datta,et al. Role of entanglement and correlations in mixed-state quantum computation , 2007 .
[74] F. Verstraete,et al. Computational complexity of projected entangled pair states. , 2007, Physical review letters.
[75] G. Vidal,et al. Classical simulation versus universality in measurement-based quantum computation , 2006, quant-ph/0608060.
[76] M. Horodecki,et al. Quantum entanglement , 2007, quant-ph/0702225.
[77] S. Luo. Using measurement-induced disturbance to characterize correlations as classical or quantum , 2008 .
[78] Peter W. Shor,et al. Estimating Jones polynomials is a complete problem for one clean qubit , 2007, Quantum Inf. Comput..
[79] Salman Beigi,et al. On the Complexity of Computing Zero-Error and Holevo Capacity of Quantum Channels , 2007, 0709.2090.
[80] Pawel Wocjan,et al. The Jones polynomial: quantum algorithms and applications in quantum complexity theory , 2008, Quantum Inf. Comput..
[81] Sergio Boixo,et al. Parameter estimation with mixed-state quantum computation , 2007, 0708.1330.
[82] Dorit Aharonov,et al. A Polynomial Quantum Algorithm for Approximating the Jones Polynomial , 2008, Algorithmica.
[83] Igor L. Markov,et al. Simulating Quantum Computation by Contracting Tensor Networks , 2008, SIAM J. Comput..
[84] Joseph Lipka,et al. A Table of Integrals , 2010 .