Studies on the Role of Entanglement in Mixed-state Quantum Computation

In this thesis, I look at the role of quantum entanglement in mixed-state quantum computation. The model we consider is the DQC1 or `power of one qubit' model. I show that there is minimal bipartite entanglement in a typical instance of the DQC1 circuit and even put an upper bound on the possible amount of entanglement. This limited amount of entanglement, however, does not imply that the system is classically simulatable. A matrix product state (MPS) algorithm for a typical instance of the DQC1 system requires exponential classical resources. This exposes a gap between the amount of entanglement and the amount of purely nonclassical correlations in a quantum system. This gap, I suggest, can be filled by quantum discord. I calculate it in a typical instance of the DQC1 circuit and find that the amount of discord is a constant fraction of the maximum possible discord for a system of that size. This allows an interpretation of quantum discord as the resource that drives mixed-state quantum computation. I also study quantum discord as a quantity of independent interest. Its role in the phenomenon of entanglement distribution is studied through an easily comprehensible example. This thesis also contains discussions on the relation between the complexity classes P, BQP and DQC1. Additional material is presented on the connections between the DQC1 model, Jones polynomials and statistical mechanics. The thesis concludes with a discussion of a few open problems related to the DQC1 model, the quantum discord and their scope in quantum information science.

[1]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[2]  John Archibald Wyler Rasputin, science, and the transmogrification of destiny , 1974 .

[3]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[4]  D. Whittaker,et al.  A Course in Functional Analysis , 1991, The Mathematical Gazette.

[5]  Derek G. Corneil,et al.  Complexity of finding embeddings in a k -tree , 1987 .

[6]  Vaughan F. R. Jones,et al.  On knot invariants related to some statistical mechanical models , 1989 .

[7]  A. Ehrenfeucht,et al.  The Computational Complexity of ({\it XOR, AND\/})-Counting Problems , 1990 .

[8]  Pérès Separability Criterion for Density Matrices. , 1996, Physical review letters.

[9]  R. Jozsa,et al.  Quantum Computation and Shor's Factoring Algorithm , 1996 .

[10]  M. Horodecki,et al.  Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.

[11]  Sen Average Entropy of a Quantum Subsystem. , 1996, Physical review letters.

[12]  P. Horodecki Separability criterion and inseparable mixed states with positive partial transposition , 1997, quant-ph/9703004.

[13]  K. Życzkowski,et al.  Composed ensembles of random unitary matrices , 1997, chao-dyn/9707006.

[14]  Artur Ekert,et al.  Quantum algorithms: entanglement–enhanced information processing , 1998, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[15]  E. Knill,et al.  Power of One Bit of Quantum Information , 1998, quant-ph/9802037.

[16]  R. Jozsa,et al.  SEPARABILITY OF VERY NOISY MIXED STATES AND IMPLICATIONS FOR NMR QUANTUM COMPUTING , 1998, quant-ph/9811018.

[17]  C. Adami,et al.  Quantum extension of conditional probability , 1999 .

[18]  Umesh V. Vazirani,et al.  Molecular scale heat engines and scalable quantum computation , 1999, STOC '99.

[19]  C. H. Bennett,et al.  Quantum nonlocality without entanglement , 1998, quant-ph/9804053.

[20]  J. Cirac,et al.  Separability and Distillability of Multiparticle Quantum Systems , 1999, quant-ph/9903018.

[21]  D. DiVincenzo,et al.  The Physical Implementation of Quantum Computation , 2000, quant-ph/0002077.

[22]  J. A. Jones NMR quantum computation , 2000 .

[23]  Michael Larsen,et al.  A Modular Functor Which is Universal¶for Quantum Computation , 2000, quant-ph/0001108.

[24]  G. Vidal,et al.  Approximate transformations and robust manipulation of bipartite pure-state entanglement , 1999, quant-ph/9910099.

[25]  V. Vedral,et al.  Classical, quantum and total correlations , 2001, quant-ph/0105028.

[26]  M. Freedman,et al.  Topological Quantum Computation , 2001, quant-ph/0101025.

[27]  Raymond Laflamme,et al.  Quantum computing and quadratically signed weight enumerators , 2001, Inf. Process. Lett..

[28]  Lorenza Viola,et al.  NMR quantum information processing and entanglement , 2002, Quantum Inf. Comput..

[29]  MAXWELL’S DEMONS,et al.  Quantum Discord and Maxwell's Demons , 2002 .

[30]  M. Freedman,et al.  Simulation of Topological Field Theories¶by Quantum Computers , 2000, quant-ph/0001071.

[31]  G. Vidal,et al.  Computable measure of entanglement , 2001, quant-ph/0102117.

[32]  W. Zurek,et al.  Quantum discord: a measure of the quantumness of correlations. , 2001, Physical review letters.

[33]  G. Vidal Efficient classical simulation of slightly entangled quantum computations. , 2003, Physical review letters.

[34]  Sung Dahm Oh,et al.  Convex-roof extended negativity as an entanglement measure for bipartite quantum systems , 2003, quant-ph/0310027.

[35]  P. Diaconis Patterns in eigenvalues: the 70th Josiah Willard Gibbs lecture , 2003 .

[36]  Howard Barnum,et al.  Separable balls around the maximally mixed multipartite quantum states , 2003 .

[37]  A. J. Scott,et al.  Entangling power of the quantum baker's map , 2003, quant-ph/0305046.

[38]  R. Jozsa,et al.  On the role of entanglement in quantum-computational speed-up , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[39]  David Poulin,et al.  Testing integrability with a single bit of quantum information , 2003 .

[40]  F. Verstraete,et al.  Separable States can be used to distribute entanglement. , 2003, Physical review letters.

[41]  Leonid Gurvits Classical deterministic complexity of Edmonds' Problem and quantum entanglement , 2003, STOC '03.

[42]  G. Vidal,et al.  Entanglement in quantum critical phenomena. , 2002, Physical review letters.

[43]  Daniel A. Lidar On the quantum computational complexity of the Ising spin glass partition function and of knot invariants , 2003, quant-ph/0309064.

[44]  Seth Lloyd,et al.  Pseudo-Random Unitary Operators for Quantum Information Processing , 2003, Science.

[45]  Discrete phase space based on finite fields , 2004, quant-ph/0401155.

[46]  R. Laflamme,et al.  Exponential speedup with a single bit of quantum information: measuring the average fidelity decay. , 2003, Physical review letters.

[47]  P. Parrilo,et al.  Complete family of separability criteria , 2003, quant-ph/0308032.

[48]  H. Zaraket,et al.  Positive-operator-valued measure optimization of classical correlations (6 pages) , 2004 .

[49]  Michael Zwolak,et al.  Mixed-state dynamics in one-dimensional quantum lattice systems: a time-dependent superoperator renormalization algorithm. , 2004, Physical review letters.

[50]  Michael A. Nielsen,et al.  Quantum computing and polynomial equations over the finite field Z 2 , 2004 .

[51]  A. Winter,et al.  Communications in Mathematical Physics Structure of States Which Satisfy Strong Subadditivity of Quantum Entropy with Equality , 2022 .

[52]  Estimation of the Local Density of States on a Quantum Computer , 2003, quant-ph/0308164.

[53]  A. Datta,et al.  Entanglement and the power of one qubit , 2005, quant-ph/0505213.

[54]  Giacomo Mauro D'Ariano,et al.  Classical randomness in quantum measurements , 2004, quant-ph/0408115.

[55]  A. Winter,et al.  Quantum, classical, and total amount of correlations in a quantum state , 2004, quant-ph/0410091.

[56]  Seth Lloyd,et al.  Convergence conditions for random quantum circuits , 2005, quant-ph/0503210.

[57]  Nicolas Gisin,et al.  Entanglement and non-locality are different resources , 2004, quant-ph/0412109.

[58]  M. Horodecki,et al.  Local versus nonlocal information in quantum-information theory: Formalism and phenomena , 2004, quant-ph/0410090.

[59]  A. Kitaev,et al.  Universal quantum computation with ideal Clifford gates and noisy ancillas (14 pages) , 2004, quant-ph/0403025.

[60]  Tal Mor,et al.  Quantum advantage without entanglement , 2005, SPIE Optics + Photonics.

[61]  E. Galvão Discrete Wigner functions and quantum computational speedup , 2004, quant-ph/0405070.

[62]  Howard Barnum,et al.  Better bound on the exponent of the radius of the multipartite separable ball (12 pages) , 2005 .

[63]  E. Schrödinger Die gegenwärtige Situation in der Quantenmechanik , 2005, Naturwissenschaften.

[64]  M. Plenio Logarithmic negativity: a full entanglement monotone that is not convex. , 2005, Physical review letters.

[65]  Andris Ambainis,et al.  Computing with highly mixed states , 2006, JACM.

[66]  G. Vidal,et al.  Classical simulation of quantum many-body systems with a tree tensor network , 2005, quant-ph/0511070.

[67]  L. Masanes All bipartite entangled states are useful for information processing. , 2005, Physical review letters.

[68]  Daniel Gottesman,et al.  Classicality in discrete Wigner functions , 2005, quant-ph/0506222.

[69]  A. Winter,et al.  Aspects of Generic Entanglement , 2004, quant-ph/0407049.

[70]  William J. Munro,et al.  Entanglement and its role in Shor's algorithm , 2006, Quantum Inf. Comput..

[71]  Dan Shepherd Computation with Unitaries and One Pure Qubit , 2006 .

[72]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[73]  Animesh Datta,et al.  Role of entanglement and correlations in mixed-state quantum computation , 2007 .

[74]  F. Verstraete,et al.  Computational complexity of projected entangled pair states. , 2007, Physical review letters.

[75]  G. Vidal,et al.  Classical simulation versus universality in measurement-based quantum computation , 2006, quant-ph/0608060.

[76]  M. Horodecki,et al.  Quantum entanglement , 2007, quant-ph/0702225.

[77]  S. Luo Using measurement-induced disturbance to characterize correlations as classical or quantum , 2008 .

[78]  Peter W. Shor,et al.  Estimating Jones polynomials is a complete problem for one clean qubit , 2007, Quantum Inf. Comput..

[79]  Salman Beigi,et al.  On the Complexity of Computing Zero-Error and Holevo Capacity of Quantum Channels , 2007, 0709.2090.

[80]  Pawel Wocjan,et al.  The Jones polynomial: quantum algorithms and applications in quantum complexity theory , 2008, Quantum Inf. Comput..

[81]  Sergio Boixo,et al.  Parameter estimation with mixed-state quantum computation , 2007, 0708.1330.

[82]  Dorit Aharonov,et al.  A Polynomial Quantum Algorithm for Approximating the Jones Polynomial , 2008, Algorithmica.

[83]  Igor L. Markov,et al.  Simulating Quantum Computation by Contracting Tensor Networks , 2008, SIAM J. Comput..

[84]  Joseph Lipka,et al.  A Table of Integrals , 2010 .