A generalized framework for modelling ordinal data

In several applied disciplines, as Economics, Marketing, Business, Sociology, Psychology, Political science, Environmental research and Medicine, it is common to collect data in the form of ordered categorical observations. In this paper, we introduce a class of models based on mixtures of discrete random variables in order to specify a general framework for the statistical analysis of this kind of data. The structure of these models allows the interpretation of the final response as related to feeling, uncertainty and a possible shelter option and the expression of the relationship among these components and subjects’ covariates. Such a model may be effectively estimated by maximum likelihood methods leading to asymptotically efficient inference. We present a simulation experiment and discuss a real case study to check the consistency and the usefulness of the approach. Some final considerations conclude the paper.

[1]  G. McLachlan,et al.  The EM algorithm and extensions , 1996 .

[2]  P. McCullagh,et al.  Generalized Linear Models , 1984 .

[3]  John Hinde,et al.  Statistical Modelling in R , 2009 .

[4]  Maria Iannario,et al.  A class of statistical models for evaluating services and performances , 2009 .

[5]  Domenico Piccolo,et al.  On the Moments of a Mixture of Uniform and Shifted Binomial random variables , 2003 .

[6]  P. McCullagh,et al.  Generalized Linear Models , 1972, Predictive Analytics.

[7]  Maria Iannario Preliminary estimators for a mixture model of ordinal data , 2012, Adv. Data Anal. Classif..

[8]  Domenico Piccolo,et al.  Inferential Issues on CUBE Models with Covariates , 2015 .

[9]  Maria Iannario,et al.  Hierarchical CUB Models for Ordinal Variables , 2012 .

[10]  Paola Zuccolotto,et al.  Modeling rating data with Nonlinear CUB models , 2014, Comput. Stat. Data Anal..

[11]  A. Agresti Analysis of Ordinal Categorical Data , 1985 .

[12]  C. Cox,et al.  Location-scale cumulative odds models for ordinal data: a generalized non-linear model approach. , 1995, Statistics in medicine.

[13]  Maria Iannario,et al.  Fitting measures for ordinal data models , 2009 .

[14]  G. McLachlan,et al.  The EM Algorithm and Extensions: Second Edition , 2008 .

[15]  Marcella Corduas,et al.  A Study on University Students’ Opinions about Teaching Quality: a Model Based Approach for Clustering Ordinal Data , 2011 .

[16]  Maria Iannario,et al.  Modelling Uncertainty and Overdispersion in Ordinal Data , 2014 .

[17]  K. Lange,et al.  Rating Movies and Rating the Raters Who Rate Them , 2009, The American statistician.

[18]  F. Harrell,et al.  Partial Proportional Odds Models for Ordinal Response Variables , 1990 .

[19]  Angela D'Elia,et al.  A mixture model for preferences data analysis , 2005, Comput. Stat. Data Anal..

[20]  R. Serfling Approximation Theorems of Mathematical Statistics , 1980 .

[21]  P. McCullagh,et al.  Generalized Linear Models, 2nd Edn. , 1990 .

[22]  Paola Zuccolotto,et al.  Modeling "don't know" responses in rating scales , 2014, Pattern Recognit. Lett..

[23]  Francesca Di Iorio,et al.  Residual diagnostics for interpreting CUB models , 2012 .

[24]  Maria Iannario Modelling shelter choices in a class of mixture models for ordinal responses , 2012, Stat. Methods Appl..

[25]  Geoffrey J. McLachlan,et al.  Finite Mixture Models , 2019, Annual Review of Statistics and Its Application.

[26]  Maria Iannario,et al.  A theorem on CUB models for rank data , 2014 .

[27]  Daniel A. Powers,et al.  Statistical Methods for Categorical Data Analysis , 1999 .

[28]  Gerhard Tutz,et al.  Regression for Categorical Data , 2011 .

[29]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[30]  Rein Taagepera,et al.  “Effective” Number of Parties , 1979 .

[31]  L. Rips,et al.  The Psychology of Survey Response , 2000 .

[32]  Maria Iannario,et al.  CUB Models: Statistical Methods and Empirical Evidence , 2011 .

[33]  Jüri Allik,et al.  A mixed-binomial model for Likert-type personality measures , 2014, Front. Psychol..

[34]  H. Simon,et al.  Models of Man. , 1957 .

[35]  A. Agresti Analysis of Ordinal Categorical Data: Agresti/Analysis , 2010 .

[36]  Marcella Corduas A statistical procedure for clustering ordinal data , 2008 .

[37]  Domenico Piccolo,et al.  A new approach for modelling consumers’ preferences , 2008 .

[38]  D. Rosenthal,et al.  Quality-space theory in olfaction , 2014, Front. Psychol..

[39]  J. Krosnick Response strategies for coping with the cognitive demands of attitude measures in surveys , 1991 .

[40]  Dimitris Karlis,et al.  Choosing Initial Values for the EM Algorithm for Finite Mixtures , 2003, Comput. Stat. Data Anal..

[41]  Anna Gottard,et al.  Varying uncertainty in CUB models , 2016, Adv. Data Anal. Classif..