Entropy dissipative one-leg multistep time approximations of nonlinear diffusive equations

New one-leg multistep time discretizations of nonlinear evolution equations are investigated. The main features of the scheme are the preservation of the nonnegativity and the entropy-dissipation structure of the diffusive equations. The key ideas are to combine Dahlquist’s G-stability theory with entropy-dissipation methods and to introduce a nonlinear transformation of variables which provides a quadratic structure in the equations. It is shown that G-stability of the one-leg scheme is sufficient to derive discrete entropy dissipation estimates. The general result is applied to a cross-diffusion system from population dynamics and a nonlinear fourth-order quantum diffusion model, for which the existence of semi-discrete weak solutions is proved. Under some assumptions on the operator of the evolution equation, the second-order convergence of solutions is shown. Moreover, some numerical experiments for the population model are presented, which underline the theoretical results.

[1]  Etienne Emmrich,et al.  Stiffly accurate Runge-Kutta methods for nonlinear evolution problems governed by a monotone operator , 2009, Math. Comput..

[2]  Werner Liniger,et al.  Stability of Two-Step Methods for Variable Integration Steps , 1983 .

[3]  G. Dahlquist A special stability problem for linear multistep methods , 1963 .

[4]  Mechthild Thalhammer,et al.  Backward Euler discretization of fully nonlinear parabolic problems , 2002, Math. Comput..

[5]  Pierre Degond,et al.  Quantum Energy-Transport and Drift-Diffusion Models , 2005 .

[6]  Ansgar Jüngel,et al.  Convergent semidiscretization of a nonlinear fourth order parabolic system , 2003 .

[7]  John W. Barrett,et al.  Finite element approximation of a nonlinear cross-diffusion population model , 2004, Numerische Mathematik.

[8]  Ansgar Jüngel,et al.  The Derrida-Lebowitz-Speer-Spohn Equation: Existence, NonUniqueness, and Decay Rates of the Solutions , 2008, SIAM J. Math. Anal..

[9]  Lebowitz,et al.  Fluctuations of a stationary nonequilibrium interface. , 1991, Physical review letters.

[10]  Ansgar Jüngel,et al.  Analysis of a Multidimensional Parabolic Population Model with Strong Cross-Diffusion , 2004, SIAM J. Math. Anal..

[11]  N. Shigesada,et al.  Spatial segregation of interacting species. , 1979, Journal of theoretical biology.

[12]  W. Hundsdorfer,et al.  Convergence of linear multistep and one-leg methods for stiff nonlinear initial value problems , 1991 .

[13]  F. Browder Nonlinear functional analysis and its applications , 1986 .

[14]  Daniel Matthes,et al.  A multidimensional nonlinear sixth-order quantum diffusion equation☆ , 2013 .

[15]  A. Jüngel Transport Equations for Semiconductors , 2009 .

[16]  G. Dahlquist Error analysis for a class of methods for stiff non-linear initial value problems , 1976 .

[17]  Germund Dahlquist,et al.  G-stability is equivalent toA-stability , 1978 .

[18]  D. Willett,et al.  On the discrete analogues of some generalizations of Gronwall's inequality , 1965 .

[19]  Eskil Hansen,et al.  Convergence of Multistep Time Discretizations of Nonlinear Dissipative Evolution Equations , 2006, SIAM J. Numer. Anal..

[20]  Giuseppe Savaré,et al.  The Wasserstein Gradient Flow of the Fisher Information and the Quantum Drift-diffusion Equation , 2009 .

[21]  Ansgar Jüngel,et al.  A Sixth-Order Nonlinear Parabolic Equation for Quantum Systems , 2009, SIAM J. Math. Anal..

[22]  Etienne Emmrich,et al.  Stability and error of the variable two-step BDF for semilinear parabolic problems , 2005 .

[23]  J. Rulla,et al.  Error analysis for implicit approximations to solutions to Cauchy problems , 1996 .

[24]  G. Kulikov,et al.  One-leg Integration of Ordinary Differential Equations with Global Error Control , 2005 .

[25]  Ansgar Jüngel,et al.  A Positivity-Preserving Numerical Scheme for a Nonlinear Fourth Order Parabolic System , 2001, SIAM J. Numer. Anal..

[26]  Daniel Matthes,et al.  A gradient flow scheme for nonlinear fourth order equations , 2010 .

[27]  Chengming Huang Dissipativity of one-leg methods for dynamical systems with delays , 2000 .

[28]  M. Crouzeix,et al.  On the equivalence of A-stability and G-stability , 1989 .

[29]  M. C. Lombardo,et al.  A velocity--diffusion method for a Lotka--Volterra system with nonlinear cross and self-diffusion , 2009 .

[30]  Ansgar Jüngel,et al.  Analysis of a parabolic cross-diffusion population model without self-diffusion , 2006 .

[31]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[32]  Harald Garcke,et al.  On A Fourth-Order Degenerate Parabolic Equation: Global Entropy Estimates, Existence, And Qualitativ , 1998 .

[33]  Etienne Emmrich,et al.  Entropy-stable and entropy-dissipative approximations of a fourth-order quantum diffusion equation , 2014, Numerische Mathematik.

[34]  An algorithmic construction of entropies in higher-order nonlinear PDEs , 2006 .

[35]  Etienne Emmrich Two-step Bdf Time Discretisation of Nonlinear Evolution Problems Governed by Monotone Operators with Strongly Continuous Perturbations , 2009, Comput. Methods Appl. Math..

[36]  A. T. Hill,et al.  Global Dissipativity for A-Stable Methods , 1997 .

[37]  Ricardo Ruiz-Baier,et al.  Analysis of a finite volume method for a cross-diffusion model in population dynamics , 2011 .

[38]  Alexander Ostermann,et al.  Stability of linear multistep methods and applications to nonlinear parabolic problems , 2004 .

[39]  Marie-Noelle Le Roux,et al.  Méthodes multipas pour des équations paraboliques non linéaires , 1980 .