Diffusion in turbulence

SummaryWe prove long time diffusive behavior (homogenization) for convection-diffusion in a turbulent flow that it incompressible and has a stationary and square integrable stream matrix. Simple shear flow examples show that this result is sharp for flows that have stationary stream matrices.

[1]  J. Doob Stochastic processes , 1953 .

[2]  J. Lions Equations Differentielles Operationnelles , 1961 .

[3]  F. Rühs,et al.  J. L. Lions, Équations Différentielles Opérationnelles et Problèmes aux Limites. IX + 292 S. Berlin/Göttingen/Heidelberg 1961. Springer-Verlag. Preis geb. 64,— , 1962 .

[4]  Tosio Kato Perturbation theory for linear operators , 1966 .

[5]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[6]  A Limit Theorem for Turbulent Diffusion , 1979 .

[7]  George Papanicolaou,et al.  A limit theorem for turbulent diffusion , 1979 .

[8]  D. W. Stroock,et al.  Multidimensional Diffusion Processes , 1979 .

[9]  G. Matheron,et al.  Is transport in porous media always diffusive? A counterexample , 1980 .

[10]  H. Osada Homogenization of diffusion processes with random stationary coefficients , 1983 .

[11]  George Papanicolaou,et al.  Bounds for effective parameters of heterogeneous media by analytic continuation , 1983 .

[12]  S. Kozlov,et al.  The method of averaging and walks in inhomogeneous environments , 1985 .

[13]  K. Oelschlager,et al.  Homogenization of a Diffusion Process in a Divergence-Free Random Field , 1988 .

[14]  Graeme W. Milton,et al.  On characterizing the set of possible effective tensors of composites: The variational method and the translation method , 1990 .

[15]  Andrew J. Majda,et al.  Mathematical models with exact renormalization for turbulent transport , 1990 .

[16]  Andrew J. Majda,et al.  An integral representation and bounds on the effective diffusivity in passive advection by laminar and turbulent flows , 1991 .

[17]  M. Avellaneda,et al.  Homogenization and Renormalization of Multiple-Scattering Expansions for Green Functions in Turbulent Transport , 1991 .

[18]  Antti Kupiainen,et al.  Random walks in asymmetric random environments , 1991 .

[19]  George Papanicolaou,et al.  Convection Enhanced Diffusion for Periodic Flows , 1994, SIAM J. Appl. Math..

[20]  Andrej Cherkaev,et al.  Variational principles for complex conductivity, viscoelasticity, and similar problems in media with complex moduli , 1994 .

[21]  A. Fannjiang,et al.  Convection-enhanced diffusion for random flows , 1997 .