Iterant recombination with one-norm minimization for multilevel Markov chain algorithms via the ellipsoid method
暂无分享,去创建一个
[1] T. Y. WilliamJ,et al. Numerical Methods in Markov Chain Modeling , 1992, Operational Research.
[2] Herbert A. Simon,et al. Aggregation of Variables in Dynamic Systems , 1961 .
[3] Michael Kupferschmid,et al. Using deep cuts in an ellipsoid algorithm for nonlinear programming , 1985 .
[4] S. McCormick,et al. A multigrid tutorial (2nd ed.) , 2000 .
[5] J. Mandel,et al. A local convergence proof for the iterative aggregation method , 1983 .
[6] R. Tyrrell Rockafellar,et al. Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.
[7] I. Marek,et al. Convergence analysis of an iterative aggregation/disaggregation method for computing stationary probability vectors of stochastic matrices , 1998, Numer. Linear Algebra Appl..
[8] William J. Stewart,et al. Numerical Solution of Markov Chains , 1993 .
[9] Thomas A. Manteuffel,et al. Multilevel Adaptive Aggregation for Markov Chains, with Application to Web Ranking , 2008, SIAM J. Sci. Comput..
[10] Hans De Sterck,et al. Recursively Accelerated Multilevel Aggregation for Markov Chains , 2010, SIAM J. Sci. Comput..
[11] Irad Yavneh,et al. On-the-Fly Adaptive Smoothed Aggregation Multigrid for Markov Chains , 2011, SIAM J. Sci. Comput..
[12] L. G. H. Cijan. A polynomial algorithm in linear programming , 1979 .
[13] William J. Stewart,et al. Introduction to the numerical solution of Markov Chains , 1994 .
[14] William L. Briggs,et al. A multigrid tutorial, Second Edition , 2000 .
[15] Michael J. Todd,et al. Modifications and implementation of the ellipsoid algorithm for linear programming , 1982, Math. Program..
[16] John N. Tsitsiklis,et al. Introduction to linear optimization , 1997, Athena scientific optimization and computation series.
[17] N. Z. Shor. Cut-off method with space extension in convex programming problems , 1977, Cybernetics.
[18] Michael J. Todd,et al. The Ellipsoid Method: A Survey , 1980 .
[19] W. Miranker,et al. Acceleration by aggregation of successive approximation methods , 1982 .
[20] W. Greub. Linear Algebra , 1981 .
[21] William L. Briggs,et al. A multigrid tutorial , 1987 .
[22] Hector A. Rosales-Macedo. Nonlinear Programming: Theory and Algorithms (2nd Edition) , 1993 .
[23] Michael J. Todd,et al. Feature Article - The Ellipsoid Method: A Survey , 1981, Oper. Res..
[24] Mokhtar S. Bazaraa,et al. Nonlinear Programming: Theory and Algorithms , 1993 .
[25] Thomas A. Manteuffel,et al. Algebraic Multigrid for Markov Chains , 2010, SIAM J. Sci. Comput..
[26] Peter Buchholz,et al. Multilevel Solutions for Structured Markov Chains , 2000, SIAM J. Matrix Anal. Appl..
[27] L. Khachiyan. Polynomial algorithms in linear programming , 1980 .
[28] Hans-Jakob Lüthi,et al. On the Solution of Variational Inequalities by the Ellipsoid Method , 1985, Math. Oper. Res..
[29] S. Leutenegger,et al. ON THE UTILITY OF THE MULTI-LEVEL ALGORITHM FOR THE SOLUTION OF NEARLY COMPLETELY DECOMPOSABLE MARKOV CHAINS , 1994 .
[30] Thomas A. Manteuffel,et al. Smoothed Aggregation Multigrid for Markov Chains , 2010, SIAM J. Sci. Comput..
[31] Michael Kupferschmid,et al. An ellipsoid algorithm for nonlinear programming , 1983, Math. Program..
[32] Irad Yavneh,et al. Square and stretch multigrid for stochastic matrix eigenproblems , 2010, Numer. Linear Algebra Appl..
[33] W. Stewart,et al. ITERATIVE METHODS FOR COMPUTING STATIONARY DISTRIBUTIONS OF NEARLY COMPLETELY DECOMPOSABLE MARKOV CHAINS , 1984 .
[34] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[35] Saudi Arabia,et al. Aggregation/Disaggregation Methods for Computing the Stationary Distribution of Markov Chains with Application to Multiprogramming System , 1994 .
[36] Michael K. Molloy. Performance Analysis Using Stochastic Petri Nets , 1982, IEEE Transactions on Computers.
[37] Udo R. Krieger,et al. On a two-level multigrid solution method for finite Markov chains , 1995 .
[38] Thomas A. Manteuffel,et al. Top-level acceleration of adaptive algebraic multilevel methods for steady-state solution to Markov chains , 2011, Adv. Comput. Math..
[39] William J. Stewart,et al. Iterative aggregation/disaggregation techniques for nearly uncoupled markov chains , 1985, JACM.
[40] I. Marek,et al. Convergence theory of some classes of iterative aggregation/disaggregation methods for computing stationary probability vectors of stochastic matrices , 2003 .
[41] Graham Horton,et al. A multi-level solution algorithm for steady-state Markov chains , 1994, SIGMETRICS.
[42] Winfried K. Grassmann,et al. Regenerative Analysis and Steady State Distributions for Markov Chains , 1985, Oper. Res..
[43] Falko Bause,et al. Stochastic Petri Nets , 1996 .
[44] Achi Brandt,et al. On Recombining Iterants in Multigrid Algorithms and Problems with Small Islands , 1995, SIAM J. Sci. Comput..
[45] U. Krieger. Numerical Solution of Large Finite Markov Chains by Algebraic Multigrid Techniques , 1995 .
[46] J. B. G. Frenk,et al. A deep cut ellipsoid algorithm for convex programming: Theory and applications , 1994, Math. Program..
[47] Robert J. Plemmons,et al. Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.
[48] Cornelis W. Oosterlee,et al. KRYLOV SUBSPACE ACCELERATION FOR NONLINEAR MULTIGRID SCHEMES , 1997 .