A practical guide to calibration of a GSSHA hydrologic model using ERDC automated model calibration software -efficient local search

Abstract : The objective of this technical note is to demonstrate, by way of example(s), how to use the Engineer Research and Development Center (ERDC) implementation of the Levenberg-Marquardt (LM) and Secant LM (SLM) method for model independent parameter estimation to calibrate a Gridded Surface Subsurface Hydrologic Analysis (GSSHA) hydrologic model. The purpose is not to present or focus on the theory which underlies the parameter estimation method(s), but rather to carefully describe how to use the ERDC software implementation of the secant LM method that accommodates the PEST model independent interface to calibrate a GSSHA hydrologic model. We will consider variations of our Secant LM (SLM) implementation in attempts to provide the interested reader with an intuitive sense of how the method works. We will also demonstrate how our LM/SLM implementation compares with its counterparts as implemented in the popular PEST software.

[1]  Brian E. Skahill,et al.  More efficient PEST compatible model independent model calibration , 2009, Environ. Model. Softw..

[2]  Hatim O. Sharif,et al.  On the calibration and verification of two‐dimensional, distributed, Hortonian, continuous watershed models , 2000 .

[3]  Barbara Baginska,et al.  Modelling nutrient transport in Currency Creek, NSW with AnnAGNPS and PEST , 2003, Environ. Model. Softw..

[4]  B. Robinson,et al.  The site-scale saturated zone flow model for Yucca Mountain: calibration of different conceptual models and their impact on flow paths. , 2003, Journal of contaminant hydrology.

[5]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[6]  George E. P. Box,et al.  Time Series Analysis: Forecasting and Control , 1977 .

[7]  C. G. Broyden A Class of Methods for Solving Nonlinear Simultaneous Equations , 1965 .

[8]  Harald Kunstmann,et al.  Inverse distributed hydrological modelling of Alpine catchments , 2005 .

[9]  J. Doherty,et al.  Role of the calibration process in reducing model predictive error , 2005 .

[10]  Fred L. Ogden,et al.  Prediction of runoff and soil moistures at the watershed scale: Effects of model complexity and parameter assignment , 2003 .

[11]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[12]  V. Pauwels,et al.  Improvement of the PEST parameter estimation algorithm through Extended Kalman Filtering , 2007 .

[13]  John Doherty,et al.  Parameter estimation and uncertainty analysis for a watershed model , 2007, Environ. Model. Softw..

[14]  A. Deletic,et al.  Sensitivity testing of a coupled Escherichia coli - : Hydrologic catchment model , 2007 .

[15]  Kaj Madsen,et al.  Methods for Non-Linear Least Squares Problems (2nd ed.) , 2004 .

[16]  W. Menke Geophysical data analysis , 1984 .

[17]  Susan Frankenstein,et al.  Fast All-Season Soil STrength (FASST) , 2004 .

[18]  W. Wallender,et al.  Temporal instability of parameters in an event - based distributed hydrologic model applied to a small semiarid catchment , 2007 .

[19]  John Doherty,et al.  Comparison of hydrologic calibration of HSPF using automatic and manual methods , 2007 .

[20]  Kaj Madsen,et al.  Methods for Non-Linear Least Squares Problems , 1999 .

[21]  Gwilym M. Jenkins,et al.  Time series analysis, forecasting and control , 1971 .

[22]  Richard H. McCuen,et al.  Effect of Flow Proportions on HSPF Model Calibration Accuracy , 2005 .

[23]  Michael Rode,et al.  Multi-objective calibration of a river water quality model—Information content of calibration data , 2007 .

[24]  M. S. Moran,et al.  Using remotely-sensed estimates of soil moisture to infer soil texture and hydraulic properties across a semi-arid watershed , 2007 .

[25]  John Doherty,et al.  Addendum to the PEST Manual , 2014 .

[26]  J. Doherty,et al.  A hybrid regularized inversion methodology for highly parameterized environmental models , 2005 .

[27]  John Doherty,et al.  An advanced regularization methodology for use in watershed model calibration , 2006 .

[28]  Francisco E. Werner,et al.  Calibration of the NEMURO nutrient-phytoplankton-zooplankton food web model to a coastal ecosystem: Evaluation of an automated calibration approach , 2007 .

[29]  S. Constable,et al.  Occam's inversion to generate smooth, two-dimensional models from magnetotelluric data , 1990 .

[30]  Igor Iskra,et al.  Application of non-linear automatic optimization techniques for calibration of HSPF. , 2007, Water environment research : a research publication of the Water Environment Federation.

[31]  John Doherty,et al.  Reply to discussion by Carl W. Chen "Methodologies for calibration and predictive analysis of a watershed model" , 2003 .

[32]  John Doherty,et al.  Predictive error analysis for a water resource management model , 2007 .

[33]  Soroosh Sorooshian,et al.  Bayesian Recursive Estimation of Parameter and Output Uncertainty for Watershed Models , 2013 .

[34]  Brian E. Skahill,et al.  More Efficient Derivative-based Watershed Model Calibration , 2006 .

[35]  John Doherty,et al.  Efficient accommodation of local minima in watershed model calibration , 2006 .