Directed Steiner Tree and the Lasserre Hierarchy

The goal for the Directed Steiner Tree problem is to find a minimum cost tree in a directed graph G=(V,E) that connects all terminals X to a given root r. It is well known that modulo a logarithmic factor it suffices to consider acyclic graphs where the nodes are arranged in L <= log |X| levels. Unfortunately the natural LP formulation has a |X|^(1/2) integrality gap already for 5 levels. We show that for every L, the O(L)-round Lasserre Strengthening of this LP has integrality gap O(L log |X|). This provides a polynomial time |X|^{epsilon}-approximation and a O(log^3 |X|) approximation in O(n^{log |X|) time, matching the best known approximation guarantee obtained by a greedy algorithm of Charikar et al.

[1]  Madhur Tulsiani CSP gaps and reductions in the lasserre hierarchy , 2009, STOC '09.

[2]  Mohit Singh,et al.  Improving Integrality Gaps via Chvátal-Gomory Rounding , 2010, APPROX-RANDOM.

[3]  J. Pach,et al.  Wiley‐Interscience Series in Discrete Mathematics and Optimization , 2011 .

[4]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[5]  Venkatesan Guruswami,et al.  Lasserre Hierarchy, Higher Eigenvalues, and Approximation Schemes for Graph Partitioning and Quadratic Integer Programming with PSD Objectives , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[6]  Madhur Tulsiani,et al.  A Linear Round Lower Bound for Lovasz-Schrijver SDP Relaxations of Vertex Cover , 2007, Twenty-Second Annual IEEE Conference on Computational Complexity (CCC'07).

[7]  Noga Alon,et al.  Nearly complete graphs decomposable into large induced matchings and their applications , 2011, STOC '12.

[8]  Sanjeev Arora,et al.  Towards Strong Nonapproximability Results in the Lovász-Schrijver Hierarchy , 2005, STOC '05.

[9]  Madhur Tulsiani,et al.  Convex Relaxations and Integrality Gaps , 2012 .

[10]  Venkatesan Guruswami,et al.  MaxMin allocation via degree lower-bounded arborescences , 2009, STOC '09.

[11]  Eden Chlamtác,et al.  Approximation Algorithms Using Hierarchies of Semidefinite Programming Relaxations , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[12]  Satish Rao,et al.  Expander flows, geometric embeddings and graph partitioning , 2004, STOC '04.

[13]  R. Ravi,et al.  A polylogarithmic approximation algorithm for the group Steiner tree problem , 2000, SODA '98.

[14]  Venkatesan Guruswami,et al.  Lasserre Hierarchy, Higher Eigenvalues, and Approximation Schemes for Quadratic Integer Programming with PSD Objectives , 2011, Electron. Colloquium Comput. Complex..

[15]  Robert Krauthgamer,et al.  Polylogarithmic inapproximability , 2003, STOC '03.

[16]  László Lovász,et al.  On the ratio of optimal integral and fractional covers , 1975, Discret. Math..

[17]  Wenceslas Fernandez de la Vega,et al.  Linear programming relaxations of maxcut , 2007, SODA '07.

[18]  Shi Li,et al.  A 1.488 approximation algorithm for the uncapacitated facility location problem , 2011, Inf. Comput..

[19]  Toniann Pitassi,et al.  Integrality gaps of 2 - o(1) for Vertex Cover SDPs in the Lovész-Schrijver Hierarchy , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[20]  Gruia Calinescu,et al.  The Polymatroid Steiner Problems , 2005, J. Comb. Optim..

[21]  Sudipto Guha,et al.  Approximation algorithms for directed Steiner problems , 1999, SODA '98.

[22]  Nikhil Bansal,et al.  A constant factor approximation algorithm for generalized min-sum set cover , 2010, SODA '10.

[23]  Samir Khuller,et al.  On directed Steiner trees , 2002, SODA '02.

[24]  Iannis Tourlakis,et al.  New Lower Bounds for Vertex Cover in the Lovasz-Schrijver Hierarchy , 2006, 21st Annual IEEE Conference on Computational Complexity (CCC'06).

[25]  Aravind Srinivasan,et al.  Integrality ratio for group Steiner trees and directed steiner trees , 2003, SODA '03.

[26]  Claire Mathieu,et al.  Sherali-adams relaxations of the matching polytope , 2009, STOC '09.

[27]  Subhash Khot,et al.  Vertex cover might be hard to approximate to within 2-/spl epsiv/ , 2003, 18th IEEE Annual Conference on Computational Complexity, 2003. Proceedings..

[28]  Sanjeev Arora,et al.  New approximation guarantee for chromatic number , 2006, STOC '06.

[29]  Monique Laurent,et al.  A Comparison of the Sherali-Adams, Lovász-Schrijver, and Lasserre Relaxations for 0-1 Programming , 2003, Math. Oper. Res..

[30]  Samir Khuller,et al.  Greedy strikes back: improved facility location algorithms , 1998, SODA '98.

[31]  Grant Schoenebeck,et al.  Linear Level Lasserre Lower Bounds for Certain k-CSPs , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[32]  Alex Zelikovsky,et al.  A series of approximation algorithms for the acyclic directed steiner tree problem , 1997, Algorithmica.

[33]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[34]  Claire Mathieu,et al.  Integrality Gaps of Linear and Semi-Definite Programming Relaxations for Knapsack , 2011, IPCO.

[35]  Egon Balas,et al.  A lift-and-project cutting plane algorithm for mixed 0–1 programs , 1993, Math. Program..

[36]  Madhur Tulsiani,et al.  Tight integrality gaps for Lovasz-Schrijver LP relaxations of vertex cover and max cut , 2007, STOC '07.

[37]  Alexander Schrijver,et al.  Cones of Matrices and Set-Functions and 0-1 Optimization , 1991, SIAM J. Optim..

[38]  Gyanit Singh,et al.  Improved Approximation Guarantees through Higher Levels of SDP Hierarchies , 2008, APPROX-RANDOM.

[39]  Friedrich Eisenbrand,et al.  Bounds on the Chvátal Rank of Polytopes in the 0/1-Cube , 1999, IPCO.

[40]  Warren P. Adams,et al.  A hierarchy of relaxation between the continuous and convex hull representations , 1990 .

[41]  T. Pitassi,et al.  Integrality gaps of 2 - o(1) for Vertex Cover SDPs in the Lovész-Schrijver Hierarchy , 2007, FOCS 2007.

[42]  Moses Charikar,et al.  Integrality gaps for Sherali-Adams relaxations , 2009, STOC '09.

[43]  Jean B. Lasserre,et al.  An Explicit Exact SDP Relaxation for Nonlinear 0-1 Programs , 2001, IPCO.

[44]  Sanjeev Arora,et al.  New Tools for Graph Coloring , 2011, APPROX-RANDOM.

[45]  Friedrich Eisenbrand,et al.  NOTE – On the Membership Problem for the Elementary Closure of a Polyhedron , 1999, Comb..

[46]  Monique Laurent,et al.  Lower Bound for the Number of Iterations in Semidefinite Hierarchies for the Cut Polytope , 2003, Math. Oper. Res..

[47]  Prasad Raghavendra,et al.  Rounding Semidefinite Programming Hierarchies via Global Correlation , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.