Polynomial approximation of quantum Lipschitz functions

We prove an approximation result for Lipschitz functions on the quantum sphere S q , from which we deduce that the two natural quantum metric structures on S q have quantum Gromov-Hausdorff distance zero.

[1]  F. Latrémolière Approximation of quantum tori by finite quantum tori for the quantum Gromov–Hausdorff distance☆ , 2003, math/0310214.

[2]  M. Gromov Groups of polynomial growth and expanding maps , 1981 .

[3]  竹崎 正道 Theory of operator algebras , 2002 .

[4]  Jens Kaad,et al.  The Podleś sphere as a spectral metric space , 2018, Journal of Geometry and Physics.

[5]  S. Woronowicz Compact quantum groups , 2000 .

[6]  P. Podleś,et al.  Quantum spheres , 1987 .

[7]  Gromov-Hausdorff Distance for Quantum Metric Spaces/Matrix Algebras Converge to the Sphere for Quantum Gromov-Hausdorff Distance , 2001, math/0108005.

[8]  Marc A. Rieffel,et al.  Metrics on State Spaces , 1999 .

[9]  J. Packer,et al.  Noncommutative Solenoids , 2011, 1110.6227.

[10]  L. Da̧browski,et al.  Dirac operator on the standard Podles quantum sphere , 2002, math/0209048.

[11]  Gromov-Hausdorff Distance for Quantum Metric Spaces , 2000, math/0011063.

[12]  C -ALGEBRAIC QUANTUM GROMOV-HAUSDORFF DISTANCE , 2003, math/0312003.

[13]  Order-unit quantum Gromov–Hausdorff distance , 2003, math/0312001.

[14]  S. Woronowicz Twisted SU (2) group. An example of a non-commutative differential calculus , 1987 .

[15]  Marc A. Rieffel,et al.  Metrics on states from actions of compact groups , 1998, Documenta Mathematica.

[16]  Frédéric Latrémolière The Quantum Gromov-Hausdorff Propinquity , 2013, 1302.4058.

[17]  JENS KAAD,et al.  Dynamics of compact quantum metric spaces , 2019, Ergodic Theory and Dynamical Systems.

[18]  A. Connes Noncommutative geometry and reality , 1995 .

[19]  Jens Kaad,et al.  The Podleś Spheres Converge to the Sphere , 2021, Communications in Mathematical Physics.

[20]  Konrad Aguilar Quantum Metrics on Approximately Finite-Dimensional Algebras , 2017 .

[21]  Walter D. van Suijlekom,et al.  Spectral Truncations in Noncommutative Geometry and Operator Systems , 2020, Communications in Mathematical Physics.

[22]  W. Groß Grundzüge der Mengenlehre , 1915 .

[23]  Matricial quantum Gromov–Hausdorff distance , 2002, math/0207282.

[24]  Andrew Lesniewski,et al.  Noncommutative Geometry , 1997 .

[25]  D. Edwards The Structure of Superspace , 1975 .