Design, Implementation, and Experimental Results of a Quaternion-Based Kalman Filter for Human Body Motion Tracking

Real-time tracking of human body motion is an important technology in synthetic environments, robotics, and other human-computer interaction applications. This paper presents an extended Kalman filter designed for real-time estimation of the orientation of human limb segments. The filter processes data from small inertial/magnetic sensor modules containing triaxial angular rate sensors, accelerometers, and magnetometers. The filter represents rotation using quaternions rather than Euler angles or axis/angle pairs. Preprocessing of the acceleration and magnetometer measurements using the Quest algorithm produces a computed quaternion input for the filter. This preprocessing reduces the dimension of the state vector and makes the measurement equations linear. Real-time implementation and testing results of the quaternion-based Kalman filter are presented. Experimental results validate the filter design, and show the feasibility of using inertial/magnetic sensor modules for real-time human body motion tracking

[1]  Cameron N. Riviere,et al.  Design of all-accelerometer inertial measurement unit for tremor sensing in hand-held microsurgical instrument , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[2]  Dariu Gavrila,et al.  The Visual Analysis of Human Movement: A Survey , 1999, Comput. Vis. Image Underst..

[3]  P. Varaiya,et al.  Design of gyroscope-free navigation systems , 2001, ITSC 2001. 2001 IEEE Intelligent Transportation Systems. Proceedings (Cat. No.01TH8585).

[4]  G. Wahba A Least Squares Estimate of Satellite Attitude , 1965 .

[5]  Xiaoping Yun,et al.  An investigation of the effects of magnetic variations on inertial/magnetic orientation sensors , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[6]  Rong Zhu,et al.  A real-time articulated human motion tracking using tri-axis inertial/magnetic sensors package , 2004, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[7]  Cameron N. Riviere,et al.  Kalman filtering for real-time orientation tracking of handheld microsurgical instrument , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[8]  Markus Haid,et al.  Low cost inertial orientation tracking with Kalman filter , 2004, Appl. Math. Comput..

[9]  Eric Robert Bachmann,et al.  Inertial and Magnetic Tracking of Limb Segment Orientation for Inserting Humans into Synthetic Environments , 2000 .

[10]  Greg Welch,et al.  The HiBall Tracker: high-performance wide-area tracking for virtual and augmented environments , 1999, VRST '99.

[11]  F. Raab,et al.  Magnetic Position and Orientation Tracking System , 1979, IEEE Transactions on Aerospace and Electronic Systems.

[12]  Xiaoping Yun,et al.  Design, Implementation, and Experimental Results of a Quaternion-Based Kalman Filter for Human Body Motion Tracking , 2006, IEEE Trans. Robotics.

[13]  Ronald Azuma,et al.  Improving static and dynamic registration in an optical see-through HMD , 1994, SIGGRAPH.

[14]  Michael Macedonia,et al.  Games soldiers play , 2002 .

[15]  Robert B. McGhee,et al.  An extended Kalman filter for quaternion-based orientation estimation using MARG sensors , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[16]  Joao L. Marins An Extended Kalman Filter for Quaternion-Based Attitude Estimation , 2000 .

[17]  Grace Wahba,et al.  Problem 65-1: A least squares estimate of satellite attitude , 1966 .

[18]  J. Kuipers Quaternions and Rotation Sequences , 1998 .

[19]  S. M. Smith,et al.  Enhancement of the inertial navigation system for the Morpheus autonomous underwater vehicles , 2001 .

[20]  P. Veltink,et al.  Compensation of magnetic disturbances improves inertial and magnetic sensing of human body segment orientation , 2005, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[21]  D. Gebre-Egziabher,et al.  A gyro-free quaternion-based attitude determination system suitable for implementation using low cost sensors , 2000, IEEE 2000. Position Location and Navigation Symposium (Cat. No.00CH37062).

[22]  E. Kraft,et al.  A quaternion-based unscented Kalman filter for orientation tracking , 2003, Sixth International Conference of Information Fusion, 2003. Proceedings of the.

[23]  P H Veltink,et al.  Three dimensional inertial sensing of foot movements for automatic tuning of a two-channel implantable drop-foot stimulator. , 2003, Medical engineering & physics.

[24]  Angelo M. Sabatini,et al.  Assessment of walking features from foot inertial sensing , 2005, IEEE Transactions on Biomedical Engineering.

[25]  P.H. Veltink,et al.  Inclination measurement of human movement using a 3-D accelerometer with autocalibration , 2004, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[26]  Robert B. McGhee,et al.  An improved quaternion-based Kalman filter for real-time tracking of rigid body orientation , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[27]  P. Veltink,et al.  Estimating orientation with gyroscopes and accelerometers. , 1999, Technology and health care : official journal of the European Society for Engineering and Medicine.

[28]  Michael Zyda,et al.  Inertial and magnetic posture tracking for inserting humans into networked virtual environments , 2001, VRST '01.

[29]  Hendrik Johannes Luinge,et al.  Inertial sensing of human movement , 2002 .

[30]  F. Markley,et al.  Quaternion Attitude Estimation Using Vector Observations , 2000 .

[31]  Wei Tech Ang,et al.  An efficient real-time human posture tracking algorithm using low-cost inertial and magnetic sensors , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[32]  M. Shuster,et al.  Three-axis attitude determination from vector observations , 1981 .

[33]  Michael Zyda,et al.  Design and implementation of MARG sensors for 3-DOF orientation measurement of rigid bodies , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[34]  Conrado Aparicio Implementation of a quaternion-based Kalman filter for human body motion tracking using MARG sensors , 2004 .

[35]  Frank Biocca,et al.  A Survey of Position Trackers , 1992, Presence: Teleoperators & Virtual Environments.

[36]  Xiaoming Hu,et al.  Drift-free attitude estimation for accelerated rigid bodies , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[37]  Jihong Lee,et al.  Sensor fusion and calibration for motion captures using accelerometers , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[38]  Angelo M. Sabatini,et al.  Quaternion-based strap-down integration method for applications of inertial sensing to gait analysis , 2006, Medical and Biological Engineering and Computing.