Retrieval of objects in video by similarity based on graph matching

In this paper, we tackle the problem of matching of objects in video in the context of the rough indexing paradigm. The approach developed is based on matching of region adjacency graphs (RAG) of pre-segmented objects. In the context of the rough indexing paradigm, the video data are of very low resolution and segmentation is consequently inaccurate. Hence the RAGs vary with the time. The contribution of this paper is a graph matching method for such RAGs based on an improvement of relaxation labelling techniques. In this method, adjustments of similarity between regions according to neighborhood consistency compensate for the inaccuracy of segmentation. The approach demonstrates promising performance on real sequences when compared to another region-based technique.

[1]  B. S. Manjunath,et al.  Introduction to mpeg-7 , 2002 .

[2]  Josep Lladós,et al.  Symbol Recognition by Error-Tolerant Subgraph Matching between Region Adjacency Graphs , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  M. Fatih Demirci,et al.  Object Categorization and the Need for Many-to-Many Matching , 2005, DAGM-Symposium.

[4]  Mario Vento,et al.  Thirty Years Of Graph Matching In Pattern Recognition , 2004, Int. J. Pattern Recognit. Artif. Intell..

[5]  Özgür Ulusoy,et al.  A histogram-based approach for object-based query-by-shape-and-color in image and video databases , 2005, Image Vis. Comput..

[6]  Keith E. Price,et al.  Relaxation Matching Techniques-A Comparison , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  William J. Christmas,et al.  Probabilistic relaxation for matching problems in computer vision , 1993, 1993 (4th) International Conference on Computer Vision.

[8]  Steven W. Zucker,et al.  On the Foundations of Relaxation Labeling Processes , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Keisuke Kameyama,et al.  Trademark retrieval by relaxation matching on fluency function approximated image contours , 2001, 2001 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (IEEE Cat. No.01CH37233).

[10]  M. Fatih Demirci,et al.  Object Recognition as Many-to-Many Feature Matching , 2006, International Journal of Computer Vision.

[11]  Cedric Nishan Canagarajah,et al.  Perceptually optimised sign language video coding , 2003, 10th IEEE International Conference on Electronics, Circuits and Systems, 2003. ICECS 2003. Proceedings of the 2003.

[12]  Francesca Manerbaa,et al.  REAL-TIME ROUGH EXTRACTION OF FOREGROUND OBJECTS IN MPEG 1 , 2 COMPRESSED VIDEO , 2005 .

[13]  Faouzi Kossentini,et al.  Retrieval of video objects by compressed domain shape features , 2000, ICECS 2000. 7th IEEE International Conference on Electronics, Circuits and Systems (Cat. No.00EX445).

[14]  Dragutin Petkovic,et al.  Query by Image and Video Content: The QBIC System , 1995, Computer.

[15]  Fernand Meyer,et al.  Graph-based object tracking , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[16]  Ali Shokoufandeh,et al.  View-based object recognition using saliency maps , 1999, Image Vis. Comput..

[17]  Xiaojun Qi,et al.  A novel fusion approach to content-based image retrieval , 2005, Pattern Recognit..

[18]  Richard C. Wilson,et al.  Inexact Graph Matching Using Symbolic Constraints , 1996 .

[19]  Alex Pentland,et al.  Photobook: Content-based manipulation of image databases , 1996, International Journal of Computer Vision.

[20]  Richard M. Karp,et al.  A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.

[21]  Faouzi Kossentini,et al.  Color Content Matching of MPEG-4 Video Objects , 2001, IEEE Pacific Rim Conference on Multimedia.

[22]  Julian R. Ullmann,et al.  An Algorithm for Subgraph Isomorphism , 1976, J. ACM.

[23]  Azriel Rosenfeld,et al.  Scene Labeling by Relaxation Operations , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[24]  Guojun Lu,et al.  Review of shape representation and description techniques , 2004, Pattern Recognit..

[25]  James Ze Wang,et al.  IRM: integrated region matching for image retrieval , 2000, ACM Multimedia.

[26]  James Ze Wang,et al.  SIMPLIcity: Semantics-Sensitive Integrated Matching for Picture LIbraries , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Roger Weber,et al.  Efficient region-based image retrieval , 2003, CIKM '03.

[28]  David Auber,et al.  Tulip - A Huge Graph Visualization Framework , 2004, Graph Drawing Software.

[29]  W. Brent Seales,et al.  Object recognition in compressed imagery , 1998, Image Vis. Comput..

[30]  Keisuke Kameyama,et al.  On a relaxation-labeling algorithm for real-time contour-based image similarity retrieval , 2003, Image Vis. Comput..

[31]  Sven J. Dickinson,et al.  Generic model abstraction from examples , 2000, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  Michael Jünger,et al.  Graph Drawing Software , 2003, Graph Drawing Software.

[33]  Edwin R. Hancock,et al.  Structural Matching by Discrete Relaxation , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[34]  Richard M. Karp,et al.  A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.

[35]  Alon Itai,et al.  On an Algorithm of Zemlyachenko for Subtree Isomorphism , 1999, Inf. Process. Lett..

[36]  Robert M. Haralick,et al.  Structural Descriptions and Inexact Matching , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.