Error bounds for strongly convex programs and (super)linearly convergent iterative schemes for the least 2-norm solution of linear programs

AbstractGiven an arbitrary point (x, u) inRn× R+m, we give bounds on the Euclidean distance betweenx and the unique solution $$\bar x$$ to a strongly convex program in terms of the violations of the Karush-Kuhn-Tucker conditions by the arbitrary point (x, u). These bounds are then used to derive linearly and superlinearly convergent iterative schemes for obtaining the unique least 2-norm solution of a linear program. These schemes can be used effectively in conjunction with the successive overrelaxation (SOR) methods for solving very large sparse linear programs.

[1]  David Gale The theory of linear economic models , 1960 .

[2]  Alston S. Householder,et al.  The Theory of Matrices in Numerical Analysis , 1964 .

[3]  Richaard W. Cottle Nonlinear Programs with Positively Bounded Jacobians , 1966 .

[4]  Olvi L. Mangasarian,et al.  Nonlinear Programming , 1969 .

[5]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[6]  James W. Daniel,et al.  Stability of the solution of definite quadratic programs , 1973, Math. Program..

[7]  G. Stewart Introduction to matrix computations , 1973 .

[8]  F. Nožička Theorie der linearen parametrischen Optimierung , 1974 .

[9]  S. Venit,et al.  Numerical Analysis: A Second Course. , 1974 .

[10]  O. Mangasarian Solution of symmetric linear complementarity problems by iterative methods , 1977 .

[11]  Stephen M. Robinson,et al.  Strongly Regular Generalized Equations , 1980, Math. Oper. Res..

[12]  Samuel D. Conte,et al.  Elementary Numerical Analysis , 1980 .

[13]  S. M. Robinson Generalized equations and their solutions, part II: Applications to nonlinear programming , 1982 .

[14]  O. Mangasarian Normal solutions of linear programs , 1984 .

[15]  Olvi L. Mangasarian Sparsity-preserving sor algorithms for separable quadratic and linear programming , 1984, Comput. Oper. Res..

[16]  Olvi L. Mangasarian,et al.  Simple bounds for solutions of monotone complementarity problems and convex programs , 1985, Math. Program..

[17]  Olvi L. Mangasarian,et al.  Error bounds for monotone linear complementarity problems , 1986, Math. Program..

[18]  Jong-Shi Pang,et al.  Inexact Newton methods for the nonlinear complementarity problem , 1986, Math. Program..

[19]  Jong-Shi Pang,et al.  A Posteriori Error Bounds for the Linearly-Constrained Variational Inequality Problem , 1987, Math. Oper. Res..