Histologic and histomorphometric evaluation of bone regeneration using nanocrystalline hydroxyapatite and human freeze-dried bone graft

[1]  Young-Kyun Kim,et al.  Influence of bone morphogenetic protein and proportion of hydroxyapatite on new bone formation in biphasic calcium phosphate graft: two pilot studies in animal bony defect model. , 2014, Journal of cranio-maxillo-facial surgery : official publication of the European Association for Cranio-Maxillo-Facial Surgery.

[2]  L. Ferreira,et al.  Repair of critical-size bone defects using bone marrow stromal cells: a histomorphometric study in rabbit calvaria. Part I: use of fresh bone marrow or bone marrow mononuclear fraction. , 2014, Clinical oral implants research.

[3]  S. M. Zakaria,et al.  Nanophase hydroxyapatite as a biomaterial in advanced hard tissue engineering: a review. , 2013, Tissue engineering. Part B, Reviews.

[4]  A. Khojasteh,et al.  Bone regeneration with a combination of nanocrystalline hydroxyapatite silica gel, platelet-rich growth factor, and mesenchymal stem cells: a histologic study in rabbit calvaria. , 2013, Oral surgery, oral medicine, oral pathology and oral radiology.

[5]  A. Khojasteh,et al.  Histological Evaluation of Regeneration in Rabbit Calvarial Bone Defects Using Demineralized Bone Matrix, Mesenchymal Stem Cells and Platelet Rich in Growth Factors , 2012 .

[6]  E. Fakhari,et al.  Comparison of bone regeneration using three demineralized freeze-dried bone allografts: A histological and histomorphometric study in rabbit calvaria , 2012, Dental research journal.

[7]  T. Mittlmeier,et al.  Osteogenic capacity of nanocrystalline bone cement in a weight-bearing defect at the ovine tibial metaphysis , 2012, International journal of nanomedicine.

[8]  B. Eslami,et al.  Histologic Evaluation of Bone Healing Following Application of Anorganic Bovine Bone and β-tricalcium Phosphate in Rabbit Calvaria , 2012, Journal of dentistry.

[9]  B. Mealey,et al.  Histologic comparison of healing after tooth extraction with ridge preservation using mineralized versus demineralized freeze-dried bone allograft. , 2012, Journal of periodontology.

[10]  E. Borie,et al.  The influence of FDBA and autogenous bone particles on regeneration of calvaria defects in the rabbit: a pilot study. , 2011, Annals of anatomy = Anatomischer Anzeiger : official organ of the Anatomische Gesellschaft.

[11]  A. Rokn,et al.  Bone Formation with Two Types of Grafting Materials: A Histologic and Histomorphometric Study , 2011, The open dentistry journal.

[12]  R. Jung,et al.  Bone regeneration in the presence of a synthetic hydroxyapatite/silica oxide-based and a xenogenic hydroxyapatite-based bone substitute material. , 2011, Clinical oral implants research.

[13]  Seong-Ho Choi,et al.  Spontaneous healing capacity of rabbit cranial defects of various sizes , 2010, Journal of periodontal & implant science.

[14]  C. Chung,et al.  Bone regeneration effects of human allogenous bone substitutes: a preliminary study , 2010, Journal of periodontal & implant science.

[15]  Yun Lu,et al.  Segmental bone regeneration using an rhBMP-2-loaded gelatin/nanohydroxyapatite/fibrin scaffold in a rabbit model. , 2009, Biomaterials.

[16]  A. Khraisat,et al.  Effect of solely applied platelet-rich plasma on osseous regeneration compared to Bio-Oss: a morphometric and densitometric study on rabbit calvaria. , 2008, Clinical implant dentistry and related research.

[17]  T. Gerber,et al.  Macroscopical, histological, and morphometric studies of porous bone-replacement materials in minipigs 8 months after implantation. , 2006, Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics.

[18]  George K B Sándor,et al.  Closure of Rabbit Calvarial Critical-Sized Defects Using Protective Composite Allogeneic and Alloplastic Bone Substitutes , 2006, The Journal of craniofacial surgery.

[19]  Werner Götz,et al.  Nanostructuring of Biomaterials—A Pathway to Bone Grafting Substitute , 2006, European Journal of Trauma.

[20]  P. Proff,et al.  The manufacture of synthetic non-sintered and degradable bone grafting substitutes. , 2006, Folia morphologica.

[21]  G. Sándor,et al.  Hyperbaric oxygen results in an increase in rabbit calvarial critical sized defects. , 2006, Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics.

[22]  J. Hatch,et al.  Histologic evaluation of mineralized and demineralized freeze-dried bone allograft for ridge and sinus augmentations. , 2005, The International journal of periodontics & restorative dentistry.

[23]  George K B Sándor,et al.  Histomorphometric evaluation of bone regeneration using allogeneic and alloplastic bone substitutes. , 2004, Journal of oral and maxillofacial surgery : official journal of the American Association of Oral and Maxillofacial Surgeons.

[24]  H. Greenwell,et al.  Ridge preservation with freeze-dried bone allograft and a collagen membrane compared to extraction alone for implant site development: a clinical and histologic study in humans. , 2003, Journal of periodontology.

[25]  M. Longaker,et al.  Biomolecular Mechanisms of Calvarial Bone Induction: Immature versus Mature Dura Mater , 2000, Plastic and reconstructive surgery.

[26]  D. Bradford,et al.  Calcium sulfate- and calcium phosphate-based bone substitutes. Mimicry of the mineral phase of bone. , 1999, The Orthopedic clinics of North America.

[27]  M. Jasty,et al.  Bone grafts and bone substitutes in hip and knee surgery. , 1999, The Orthopedic clinics of North America.

[28]  S. Ludwig,et al.  Osteoinductive bone graft substitutes for spinal fusion: a basic science summary. , 1999, The Orthopedic clinics of North America.

[29]  S. Boden,et al.  Experimental Posterolateral Lumbar Spinal Fusion With a Demineralized Bone Matrix Gel , 1998, Spine.

[30]  A. Scarano,et al.  Comparison of bone regeneration with the use of mineralized and demineralized freeze-dried bone allografts: a histological and histochemical study in man. , 1996, Biomaterials.

[31]  M. Somerman,et al.  Commercially-prepared allograft material has biological activity in vitro. , 1995, Journal of periodontology.

[32]  W C Hutton,et al.  An Experimental Lumbar Intertransverse Process Spinal Fusion Model: Radiographic, Histologic, and Biomechanical Healing Characteristics , 1995, Spine.

[33]  A. C. Richardson,et al.  Small versus large particles of demineralized freeze-dried bone allografts in human intrabony periodontal defects. , 1993, Journal of periodontology.

[34]  J. Mellonig,et al.  A comparison of freeze-dried bone allograft and demineralized freeze-dried bone allograft in human periodontal osseous defects. , 1989, Journal of periodontology.

[35]  V. Goldberg,et al.  Natural history of autografts and allografts. , 1987, Clinical orthopaedics and related research.

[36]  R. Holmes,et al.  Porous hydroxyapatite as a bone-graft substitute in metaphyseal defects. A histometric study. , 1986, The Journal of bone and joint surgery. American volume.

[37]  J O Hollinger,et al.  The critical size defect as an experimental model for craniomandibulofacial nonunions. , 1986, Clinical orthopaedics and related research.

[38]  Michael Jarcho,et al.  Calcium phosphate ceramics as hard tissue prosthetics. , 1981, Clinical orthopaedics and related research.

[39]  H. C. Killey,et al.  A histological and radiological comparison of the healing of defects in the rabbit calvarium with and without implanted heterogeneous anorganic bone. , 1968, Archives of oral biology.

[40]  Gunasekaran Kumar,et al.  Morbidity at Bone Graft Donor Sites , 2014 .

[41]  A. Azari,et al.  Histologic Evaluation of Bone Healing Following Application of Anorganic Bovine Bone and β-tricalcium Phosphate in Rabbit Calvaria. , 2012 .

[42]  D. Buser,et al.  Ridge preservation techniques for implant therapy. , 2009, The International journal of oral & maxillofacial implants.

[43]  S. Vastardis,et al.  Comparative evaluation of decalcified and non-decalcified freeze-dried bone allografts in rhesus monkeys. I. Histologic findings. , 2005, Journal of periodontology.

[44]  K. Heiple,et al.  The effect of histocompatibility matching on canine frozen bone allografts. , 1983, The Journal of bone and joint surgery. American volume.