Extending the limits of natural photosynthesis and implications for technical light harvesting

Photosynthetic organisms provide, directly or indirectly, the energy that sustains life on earth by harvesting light from the sun. The amount of light impinging on the surface of the earth vastly surpasses the energy needs of life including man. Harvesting the sun is, therefore, an option for a sustainable energy source: directly by improving biomass production, indirectly by coupling it to the production of hydrogen for fuel or, conceptually, by using photosynthetic strategies for technological solutions based on non-biological or hybrid materials. In this review, we summarize the various light climates on earth, the primary reactions responsible for light harvesting and transduction to chemical energy in photosynthesis, and the mechanisms of competitively adapting the photosynthetic apparatus to the ever-changing light conditions. The focus is on oxygenic photosynthesis, its adaptation to the various light-climates by specialized pigments and on the extension of its limits by the evolution of red-shifted chlorophylls. The implications for potential technical solutions are briefly discussed.

[1]  V. Sundström,et al.  Tuning Energy Transfer in the Peridinin–chlorophyll Complex by Reconstitution with Different Chlorophylls , 2005, Photosynthesis Research.

[2]  B. Crossett,et al.  18O Labeling of Chlorophyll d in Acaryochloris marina Reveals That Chlorophyll a and Molecular Oxygen Are Precursors* , 2010, The Journal of Biological Chemistry.

[3]  P. Dutton,et al.  Bacteriochlorophyll Protein Maquettes , 2006 .

[4]  Robert E. Blankenship,et al.  Discovery of a free-living chlorophyll d-producing cyanobacterium with a hybrid proteobacterial/cyanobacterial small-subunit rRNA gene. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[5]  T. G. Owens,et al.  Detailed Balance in Förster−Dexter Excitation Transfer and Its Application to Photosynthesis , 1998 .

[6]  A. Schinkel,et al.  Physiological and pharmacological roles of ABCG2 (BCRP): recent findings in Abcg2 knockout mice. , 2009, Advanced drug delivery reviews.

[7]  A. Murakami,et al.  Chlorophyll d in an Epiphytic Cyanobacterium of Red Algae , 2004, Science.

[8]  Lisa R. Moore,et al.  Photophysiology of the marine cyanobacterium Prochlorococcus: Ecotypic differences among cultured isolates , 1999 .

[9]  V. Yurkov,et al.  New Light on Aerobic Anoxygenic Phototrophs , 2009 .

[10]  J. Amesz,et al.  A bacteriochlorophyll a antenna complex from purple bacteria absorbing at 963 nm. , 2001, Biochemistry.

[11]  M. Grube,et al.  Ultrastructural and genetic characteristics of endolithic cyanobacterial biofilms colonizing Antarctic granite rocks. , 2007, FEMS microbiology ecology.

[12]  Martin Ostrowski,et al.  Diversity and evolution of phycobilisomes in marine Synechococcus spp.: a comparative genomics study , 2007, Genome Biology.

[13]  J. Rochaix,et al.  State transitions at the crossroad of thylakoid signalling pathways , 2010, Photosynthesis Research.

[14]  Klaus Qvortrup,et al.  Endolithic chlorophyll d-containing phototrophs , 2011, The ISME Journal.

[15]  Jörg Overmann,et al.  An obligately photosynthetic bacterial anaerobe from a deep-sea hydrothermal vent. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[16]  M. Mimuro,et al.  Identification of the special pair of photosystem II in a chlorophyll d-dominated cyanobacterium , 2007, Proceedings of the National Academy of Sciences.

[17]  Robert Eugene Blankenship,et al.  Nomenclature for membrane-bound light-harvesting complexes of cyanobacteria , 2008, Photosynthesis Research.

[18]  Tadashi Watanabe,et al.  Unusual Tetrapyrrole Pigments of Photosynthetic Antennae and Reaction Centers: Specially-tailored Chlorophylls , 2006 .

[19]  P. Ralph,et al.  Ecology: A niche for cyanobacteria containing chlorophyll d , 2005, Nature.

[20]  H. Trissl Long-wavelength absorbing antenna pigments and heterogeneous absorption bands concentrate excitons and increase absorption cross section , 1993, Photosynthesis Research.

[21]  Thomas S. Bibby,et al.  Biogeography of Photosynthetic Light-Harvesting Genes in Marine Phytoplankton , 2009, PloS one.

[22]  F. Daldal,et al.  The purple phototrophic bacteria , 2009 .

[23]  Geir Johnsen,et al.  Phytoplankton pigments : characterization, chemotaxonomy and applications in oceanography , 2011 .

[24]  C. Braun,et al.  Why is water blue , 1993 .

[25]  Yaqiong Li,et al.  A cyanobacterium that contains chlorophyll f – a red‐absorbing photopigment , 2012, FEBS letters.

[26]  Robert Eugene Blankenship,et al.  Evolution of photosynthesis. , 2011, Annual review of plant biology.

[27]  E. Peterman,et al.  Peridinin chlorophyll a protein: relating structure and steady-state spectroscopy. , 2000, Biochemistry.

[28]  X. Turon,et al.  Cyanobacterial Diversity and a New Acaryochloris-Like Symbiont from Bahamian Sea-Squirts , 2011, PloS one.

[29]  A. Scherz,et al.  Bacteriochlorophyll Sensitizers in Photodynamic Therapy , 2006 .

[30]  B. Grimm,et al.  Reduced activity of plastid protoporphyrinogen oxidase causes attenuated photodynamic damage during high-light compared to low-light exposure. , 2006, The Plant journal : for cell and molecular biology.

[31]  M. Kuypers,et al.  Physiology and Phylogeny of Green Sulfur Bacteria Forming a Monospecific Phototrophic Assemblage at a Depth of 100 Meters in the Black Sea , 2005, Applied and Environmental Microbiology.

[32]  Jason Raymond,et al.  Biosynthetic pathways, gene replacement and the antiquity of life , 2004 .

[33]  C. Weiss 3 – Electronic Absorption Spectra of Chlorophylls , 1978 .

[34]  Luping Yu,et al.  Development of Semiconducting Polymers for Solar Energy Harvesting , 2010 .

[35]  Robert Eugene Blankenship,et al.  Structural Modeling of the Lhca4 Subunit of LHCI-730 Peripheral Antenna in Photosystem I Based on Similarity with LHCII* , 2003, Journal of Biological Chemistry.

[36]  Paul G. Falkowski,et al.  Photoacclimation of Light Harvesting Systems in Eukaryotic Algae , 2003 .

[37]  K. Schulten,et al.  Efficient light harvesting through carotenoids , 2004, Photosynthesis Research.

[38]  D. C. Fork,et al.  Light harvesting in the green alga Ostreobium sp., a coral symbiont adapted to extreme shade , 1989 .

[39]  H. Scheer,et al.  De novo Designed Bacteriochlorophyll-Binding Helix-Bundle Proteins , 2009 .

[40]  D. Ort,et al.  Optimizing Antenna Size to Maximize Photosynthetic Efficiency[W] , 2010, Plant Physiology.

[41]  Computational studies on structural and excited-state properties of modified chlorophyll f with various axial ligands. , 2011, The journal of physical chemistry. A.

[42]  A. Larkum,et al.  Chromatic photoacclimation extends utilisable photosynthetically active radiation in the chlorophyll d-containing cyanobacterium, Acaryochloris marina , 2009, Photosynthesis Research.

[43]  L. Bogorad Phycobiliproteins and Complementary Chromatic Adaptation , 1975 .

[44]  K. Diederichs,et al.  Structural Basis of Light Harvesting by Carotenoids: Peridinin-Chlorophyll-Protein from Amphidinium carterae , 1996, Science.

[45]  Govindjee,et al.  Spectral signatures of photosynthesis. I. Review of Earth organisms. , 2007, Astrobiology.

[46]  A. Larkum The Evolution of Chlorophylls and Photosynthesis , 2006 .

[47]  I. Radivojevic,et al.  Commercially viable porphyrinoid dyes for solar cells , 2010 .

[48]  Bryan Q. Spring,et al.  Dipole Strengths in the Chlorophylls¶,† , 2003 .

[49]  William W. Parson,et al.  Light-Harvesting Antennas in Photosynthesis , 2003, Advances in Photosynthesis and Respiration.

[50]  Robert Eugene Blankenship,et al.  Expanding the solar spectrum used by photosynthesis. , 2011, Trends in plant science.

[51]  D. Kehoe Chromatic adaptation and the evolution of light color sensing in cyanobacteria , 2010, Proceedings of the National Academy of Sciences.

[52]  Measuring the current density – voltage characteristics of individual subcells in two-terminal polymer tandem solar cells , 2011 .

[53]  Sebastian Mackowski,et al.  Metal-enhanced fluorescence of chlorophylls in single light-harvesting complexes. , 2008, Nano letters.

[54]  N. Isaacs,et al.  Pigment-pigment interactions and energy transfer in the antenna complex of the photosynthetic bacterium Rhodopseudomonas acidophila. , 1996, Structure.

[55]  Andrew J. Young,et al.  The Photochemistry of Carotenoids , 1999, Advances in Photosynthesis and Respiration.

[56]  Lars Olof Björn,et al.  A viewpoint: Why chlorophyll a? , 2009, Photosynthesis Research.

[57]  M. Mimuro,et al.  Metabolic engineering of the Chl d-dominated cyanobacterium Acaryochloris marina: production of a novel Chl species by the introduction of the chlorophyllide a oxygenase gene. , 2012, Plant & cell physiology.

[58]  J. Garrido,et al.  Chlorophyll c Pigments: Current Status , 2006 .

[59]  R. Emerson The Quantum Yield of Photosynthesis , 1958 .

[60]  H. Scheer,et al.  18O and mass spectrometry in chlorophyll research: Derivation and loss of oxygen atoms at the periphery of the chlorophyll macrocycle during biosynthesis, degradation and adaptation , 2004, Photosynthesis Research.

[61]  Thorben Dammeyer,et al.  Function and distribution of bilinbiosynthesis enzymes in photosynthetic organisms , 2008, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[62]  James Barber,et al.  Comparing Photosynthetic and Photovoltaic Efficiencies and Recognizing the Potential for Improvement , 2011, Science.

[63]  B. Montgomery Shedding new light on the regulation of complementary chromatic adaptation , 2008, Central European Journal of Biology.

[64]  A. Scherz,et al.  Excitation trap approach to analyze size and pigment-pigment coupling: reconstitution of LH1 antenna of Rhodobacter sphaeroides with Ni-substituted bacteriochlorophyll. , 2001, Biochemistry.

[65]  B. Green Was “molecular opportunism” a factor in the evolution of different photosynthetic light-harvesting pigment systems? , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[66]  Martin Gouterman,et al.  Spectra of porphyrins: Part II. Four orbital model , 1963 .

[67]  M. Martínez‐Díaz,et al.  Lighting porphyrins and phthalocyanines for molecular photovoltaics. , 2010, Chemical communications.

[68]  Kazuichi Yoshida,et al.  Chlorophyll a oxygenase (CAO) is involved in chlorophyll b formation from chlorophyll a. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[69]  A. Magnuson,et al.  Excitation energy transfer to Photosystem I in filaments and heterocysts of Nostoc punctiforme. , 2010, Biochimica et biophysica acta.

[70]  P. Falkowski Molecular Ecology of Phytoplankton Photosynthesis , 1992 .

[71]  Rienk van Grondelle,et al.  Energy transfer in photosynthesis: experimental insights and quantitative models. , 2006, Physical chemistry chemical physics : PCCP.

[72]  A. Oren Bacteriorhodopsin‐mediated CO2 photoassimilation in the Dead Sea1 , 1983 .

[73]  A. Grossman A molecular understanding of complementary chromatic adaptation , 2005 .

[74]  A. Murakami,et al.  Molecular Detection of Epiphytic Acaryochloris spp. on Marine Macroalgae , 2006, Applied and Environmental Microbiology.

[75]  R. Olson,et al.  Prochlorococcus marinus nov. gen. nov. sp.: an oxyphototrophic marine prokaryote containing divinyl chlorophyll a and b , 1992, Archives of Microbiology.

[76]  A. Larkum,et al.  Chlorophyll d as the major photopigment in Acaryochloris marina , 2002 .

[77]  James Barber,et al.  The nature of the photosystem II reaction centre in the chlorophyll d-containing prokaryote, Acaryochloris marina , 2005, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[78]  V. Badescu,et al.  Improved model for solar cells with up-conversion of low-energy photons , 2009 .

[79]  H. Trissl,et al.  The cyanobacterium Spirulina platensis contains a long wavelength-absorbing pigment C738 (F76077K) at room temperature. , 1998, Biochemistry.

[80]  J. Köhler Optical Spectroscopy of Individual Light-Harvesting Complexes from Purple Bacteria , 2009 .

[81]  A. Larkum,et al.  The major light‐harvesting pigment protein of Acaryochloris marina , 2002, FEBS letters.

[82]  V. Sundström,et al.  Exciton delocalization probed by excitation annihilation in the light-harvesting antenna LH2. , 2001, Physical review letters.

[83]  M. Graetzel,et al.  Artificial photosynthesis: biomimetic approaches to solar energy conversion and storage. , 2010, Current opinion in biotechnology.

[84]  H. Tamiaki,et al.  Pressure-induced red shift and broadening of the Qy absorption of main light-harvesting antennae chlorosomes from green photosynthetic bacteria and their dependency upon alkyl substituents of the composite bacteriochlorophylls. , 2008, Journal of Physical Chemistry B.

[85]  Q. Hu,et al.  A photosystem I reaction center driven by chlorophyll d in oxygenic photosynthesis. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[86]  W. Hess,et al.  Multiplication of antenna genes as a major adaptation to low light in a marine prokaryote. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[87]  Ethan Sternberg,et al.  Porphyrin-based photosensitizers for use in photodynamic therapy , 1998 .

[88]  Min Chen,et al.  Chlorophylls, ligands and assembly of light-harvesting complexes in chloroplasts , 2007, Photosynthesis Research.

[89]  A. Larkum,et al.  Influence of structure on binding of chlorophylls to peptide ligands. , 2005, Journal of the American Chemical Society.

[90]  G. Demopoulos,et al.  Near‐Infrared Sunlight Harvesting in Dye‐Sensitized Solar Cells Via the Insertion of an Upconverter‐TiO2 Nanocomposite Layer , 2010, Advanced materials.

[91]  W. M. Manning,et al.  CHLOROPHYLL D, A GREEN PIGMENT OF RED ALGAE , 1943 .

[92]  Y. Takano,et al.  Evidence of Global Chlorophyll d , 2008, Science.

[93]  Paul G. Falkowski,et al.  Primary Productivity and Biogeochemical Cycles in the Sea , 1992 .

[94]  T. Richter,et al.  Optics of a Bifacial Leaf: 3. Implications for Photosynthetic Performance , 1998 .

[95]  R. Jennings,et al.  Spectroscopic and molecular characterization of a long wavelength absorbing antenna of Ostreobium sp. , 1999, Biochimica et biophysica acta.

[96]  D. G. Adams,et al.  A new chlorophyll d-containing cyanobacterium: evidence for niche adaptation in the genus Acaryochloris , 2010, The ISME Journal.

[97]  A. Scherz,et al.  Chlorophyll Sensitizers in Photodynamic Therapy , 2006 .

[98]  Carotenoid-chlorophyll complexes: Ready-to-harvest , 2005 .

[99]  Alain Finkel,et al.  World Scientific Publishing Company , 2013 .

[100]  Kian Ping Loh,et al.  Microstructuring of Graphene Oxide Nanosheets Using Direct Laser Writing , 2010, Advanced materials.

[101]  C. Wilhelm,et al.  Uphill energy transfer from long-wavelength absorbing chlorophylls to PS II in Ostreobium sp. is functional in carbon assimilation , 2006, Photosynthesis Research.

[102]  H. Scheer,et al.  A Red-Shifted Chlorophyll , 2010, Science.

[103]  Christoph J. Brabec,et al.  Organic tandem solar cells: A review , 2009 .

[104]  H. Scheer,et al.  Chlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and Applications , 2006 .

[105]  S. Miyachi,et al.  Light‐harvesting in Acaryochloris marina – spectroscopic characterization of a chlorophyll d‐dominated photosynthetic antenna system , 1997, FEBS letters.