An evaluation of feature selection methods for environmental data

[1]  Huan Liu,et al.  Feature Selection for High-Dimensional Data: A Fast Correlation-Based Filter Solution , 2003, ICML.

[2]  Verónica Bolón-Canedo,et al.  On developing an automatic threshold applied to feature selection ensembles , 2018, Inf. Fusion.

[3]  Mengjie Zhang,et al.  Differential evolution for filter feature selection based on information theory and feature ranking , 2018, Knowl. Based Syst..

[4]  G. Sylaios,et al.  Seagrass and hydrographic data for the Mediterranean Sea , 2019, Data in brief.

[5]  Shengli Wu,et al.  The weighted Condorcet fusion in information retrieval , 2013, Inf. Process. Manag..

[6]  Xin Yao,et al.  A Survey on Evolutionary Computation Approaches to Feature Selection , 2016, IEEE Transactions on Evolutionary Computation.

[7]  Huan Liu,et al.  Feature Selection for Classification: A Review , 2014, Data Classification: Algorithms and Applications.

[8]  Javed A. Aslam,et al.  Condorcet fusion for improved retrieval , 2002, CIKM '02.

[9]  S. Shekhar,et al.  Personal Identification Using Multibiometrics Rank-Level Fusion , 2011, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[10]  Yvan Saeys,et al.  Robust Feature Selection Using Ensemble Feature Selection Techniques , 2008, ECML/PKDD.

[11]  Athanassios C. Tsikliras,et al.  Species Distribution Modelling via Feature Engineering and Machine Learning for Pelagic Fishes in the Mediterranean Sea , 2020, Applied Sciences.

[12]  Francisco Azuaje,et al.  An assessment of recently published gene expression data analyses: reporting experimental design and statistical factors , 2006, BMC Medical Informatics Decis. Mak..

[13]  Dun-Wei Gong,et al.  Feature selection algorithm based on bare bones particle swarm optimization , 2015, Neurocomputing.

[14]  Huan Liu,et al.  Toward integrating feature selection algorithms for classification and clustering , 2005, IEEE Transactions on Knowledge and Data Engineering.

[15]  Anil K. Jain,et al.  Simultaneous feature selection and clustering using mixture models , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  B. Grofman,et al.  If you like the alternative vote (a.k.a. the instant runoff), then you ought to know about the Coombs rule , 2004 .

[17]  Kui Yu,et al.  A Unified View of Causal and Non-causal Feature Selection , 2018, ACM Trans. Knowl. Discov. Data.

[18]  Ron Kohavi,et al.  Wrappers for Feature Subset Selection , 1997, Artif. Intell..

[19]  Jugal K. Kalita,et al.  MIFS-ND: A mutual information-based feature selection method , 2014, Expert Syst. Appl..

[20]  Saptarsi Goswami,et al.  Empirical Study on Filter based Feature Selection Methods for Text Classification , 2013 .

[21]  Jian Cheng,et al.  Multi-Objective Particle Swarm Optimization Approach for Cost-Based Feature Selection in Classification , 2017, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[22]  Thibault Helleputte,et al.  Robust biomarker identification for cancer diagnosis with ensemble feature selection methods , 2010, Bioinform..

[23]  Haibo He,et al.  ADASYN: Adaptive synthetic sampling approach for imbalanced learning , 2008, 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence).

[24]  Larry A. Rendell,et al.  The Feature Selection Problem: Traditional Methods and a New Algorithm , 1992, AAAI.

[25]  Randal S. Olson,et al.  Benchmarking Relief-Based Feature Selection Methods , 2017, J. Biomed. Informatics.

[26]  Damodar Reddy Edla,et al.  A new hybrid stability measure for feature selection , 2020, Applied Intelligence.

[27]  J. R. Quinlan Induction of decision trees , 2004, Machine Learning.

[28]  Yiannis S. Boutalis,et al.  Investigating the Behavior of Compact Composite Descriptors in Early Fusion, Late Fusion and Distributed Image Retrieval , 2010 .

[29]  Witold R. Rudnicki,et al.  Feature Selection with the Boruta Package , 2010 .

[30]  Xin Jin,et al.  Machine Learning Techniques and Chi-Square Feature Selection for Cancer Classification Using SAGE Gene Expression Profiles , 2006, BioDM.

[31]  Chao Liu,et al.  Global geometric similarity scheme for feature selection in fault diagnosis , 2014, Expert Syst. Appl..

[32]  Gavin C. Cawley,et al.  Sparse Multinomial Logistic Regression via Bayesian L1 Regularisation , 2006, NIPS.

[33]  Bertrand Michel,et al.  Correlation and variable importance in random forests , 2013, Statistics and Computing.

[34]  J.C. Rajapakse,et al.  SVM-RFE With MRMR Filter for Gene Selection , 2010, IEEE Transactions on NanoBioscience.

[35]  Xiaofeng Zhu,et al.  Unsupervised feature selection for visual classification via feature-representation property , 2017, Neurocomputing.

[36]  Marek Hatala,et al.  Voting Theory for Concept Detection , 2012, ESWC.

[37]  A. Townsend Peterson,et al.  Novel methods improve prediction of species' distributions from occurrence data , 2006 .

[38]  Nikola Bogunovic,et al.  A review of feature selection methods with applications , 2015, 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO).

[39]  Jean-Philippe Vert,et al.  The Influence of Feature Selection Methods on Accuracy, Stability and Interpretability of Molecular Signatures , 2011, PloS one.

[40]  Verónica Bolón-Canedo,et al.  Ensemble feature selection: Homogeneous and heterogeneous approaches , 2017, Knowl. Based Syst..

[41]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[42]  Scott Lundberg,et al.  A Unified Approach to Interpreting Model Predictions , 2017, NIPS.

[43]  Wei Chen,et al.  Identification of bacteriophage virion proteins by the ANOVA feature selection and analysis. , 2014, Molecular bioSystems.

[44]  Zhi Huang,et al.  Application of random forest, generalised linear model and their hybrid methods with geostatistical techniques to count data: Predicting sponge species richness , 2017, Environ. Model. Softw..

[45]  Nitesh V. Chawla,et al.  SMOTE: Synthetic Minority Over-sampling Technique , 2002, J. Artif. Intell. Res..

[46]  Avi Arampatzis,et al.  Seagrass detection in the mediterranean: A supervised learning approach , 2018, Ecol. Informatics.

[47]  Randal S. Olson,et al.  Relief-Based Feature Selection: Introduction and Review , 2017, J. Biomed. Informatics.

[48]  Senén Barro,et al.  Do we need hundreds of classifiers to solve real world classification problems? , 2014, J. Mach. Learn. Res..

[49]  Avi Arampatzis,et al.  Late fusion of compact composite descriptors for retrieval from heterogeneous image databases , 2010, SIGIR.

[50]  José Carlos Cortizo,et al.  Multi Criteria Wrapper Improvements to Naive Bayes Learning , 2006, IDEAL.

[51]  Thomas Lengauer,et al.  Permutation importance: a corrected feature importance measure , 2010, Bioinform..

[52]  Tie-Yan Liu,et al.  LightGBM: A Highly Efficient Gradient Boosting Decision Tree , 2017, NIPS.