A gradient search maximization algorithm for the asymmetric Laplace likelihood

The asymmetric Laplace likelihood naturally arises in the estimation of conditional quantiles of a response variable given covariates. The estimation of its parameters entails unconstrained maximization of a concave and non-differentiable function over the real space. In this note, we describe a maximization algorithm based on the gradient of the log-likelihood that generates a finite sequence of parameter values along which the likelihood increases. The algorithm can be applied to the estimation of mixed-effects quantile regression, Laplace regression with censored data, and other models based on Laplace likelihood. In a simulation study and in a number of real-data applications, the proposed algorithm has shown notable computational speed.

[1]  Duncan Lee,et al.  Bayesian quantile regression for count data with application to environmental epidemiology , 2010 .

[2]  Marco Geraci,et al.  Linear Quantile Mixed Models: The lqmm Package for Laplace Quantile Regression , 2014 .

[3]  R. Koenker,et al.  The Gaussian hare and the Laplacian tortoise: computability of squared-error versus absolute-error estimators , 1997 .

[4]  R. Koenker,et al.  Regression Quantiles , 2007 .

[5]  Matteo Bottai,et al.  A Command for Laplace Regression , 2013 .

[6]  Alessio Farcomeni,et al.  Quantile regression for longitudinal data based on latent Markov subject-specific parameters , 2010, Statistics and Computing.

[7]  A. Wolk,et al.  Evaluating percentiles of survival. , 2012, Epidemiology.

[8]  Matteo Bottai,et al.  Laplace regression with censored data , 2010, Biometrical journal. Biometrische Zeitschrift.

[9]  D. Hunter,et al.  Quantile Regression via an MM Algorithm , 2000 .

[10]  R. Koenker,et al.  Computing regression quantiles , 1987 .

[11]  G. Yin,et al.  Bayesian Quantile Regression for Longitudinal Studies with Nonignorable Missing Data , 2010, Biometrics.

[12]  M. Bottai,et al.  Quantile regression for longitudinal data using the asymmetric Laplace distribution. , 2007, Biostatistics.

[13]  Marco Geraci,et al.  Linear quantile mixed models , 2013, Statistics and Computing.

[14]  A. Gulsvik,et al.  Mortality by level of emphysema and airway wall thickness. , 2013, American journal of respiratory and critical care medicine.

[15]  T. Åkerstedt,et al.  Original Contribution Sleep Duration and Survival Percentiles across Categories of Physical Activity , 2022 .

[16]  R. Koenker,et al.  Goodness of Fit and Related Inference Processes for Quantile Regression , 1999 .

[17]  M. Bottai,et al.  Mixed-Effects Models for Conditional Quantiles with Longitudinal Data , 2009, The international journal of biostatistics.