AM1* parameters for manganese and iron

We report the parameterization of AM1* for the elements manganese and iron. The basis sets for both metals contain one set each of s-, p- and d-orbitals. AM1* parameters are now available for H, C, N, O and F (which use the original AM1 parameters), Al, Si, P, S, Cl, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Br, Zr, Mo, I and Au. The performance and typical errors of AM1* are discussed for Mn and Fe, and are compared with available NDDO Hamiltonians.

[1]  Timothy Clark,et al.  AM1* parameters for cobalt and nickel , 2010, Journal of molecular modeling.

[2]  Following nature—Theoretical studies on factors modulating catalytic activity of porphyrins , 2006 .

[3]  Michael J. Frisch,et al.  Self‐consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets , 1984 .

[4]  J. Stewart Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements , 2007, Journal of molecular modeling.

[5]  Timothy Clark,et al.  AM1* parameters for bromine and iodine , 2009, Journal of molecular modeling.

[6]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[7]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[8]  J. D. Cox,et al.  Thermochemistry of organic and organometallic compounds , 1970 .

[9]  C. Eaborn The Chemistry of the Metal-Carbon Bond. Volume 4. The Use of Organometallic Compounds in Organic Synthesis , 1987 .

[10]  Eamonn F. Healy,et al.  Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model , 1985 .

[11]  Timothy Clark,et al.  Enthalpies of formation from B3LYP calculations , 2004, J. Comput. Chem..

[12]  H. Kayı AM1* parameters for gold , 2010, Journal of molecular modeling.

[13]  A. L. McClellan,et al.  Tables of experimental dipole moments , 1963 .

[14]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[15]  P. Schleyer Encyclopedia of computational chemistry , 1998 .

[16]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations , 1984 .

[17]  D. A. Sullivan,et al.  Gas-Phase Ion and Neutral Thermochemistry , 1988 .

[18]  Timothy Clark,et al.  AM1* parameters for copper and zinc , 2007, Journal of molecular modeling.

[19]  Timothy Clark,et al.  AM1* parameters for aluminum, silicon, titanium and zirconium , 2005, Journal of molecular modeling.

[20]  Timothy Clark,et al.  AM1* parameters for vanadium and chromium , 2009, Journal of molecular modeling.

[21]  J. Stewart Optimization of parameters for semiempirical methods II. Applications , 1989 .

[22]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals , 1985 .

[23]  J. Stewart Optimization of parameters for semiempirical methods I. Method , 1989 .

[24]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi , 1985 .

[25]  M. Dewar,et al.  Ground States of Molecules. 38. The MNDO Method. Approximations and Parameters , 1977 .

[26]  Anselm H. C. Horn,et al.  AM1* parameters for phosphorus, sulfur and chlorine , 2003, Journal of molecular modeling.

[27]  Notker Rösch,et al.  AM1/d Parameters for Molybdenum , 2000 .

[28]  J. Cano,et al.  Two proton-one electron coupled transfer in iron and manganese superoxide dismutases: A density functional study , 2007 .