Role of cardiopulmonary baroreflexes during dynamic exercise.

To examine the role of cardiopulmonary (CP) mechanoreceptors in the regulation of arterial blood pressure during dynamic exercise in humans, we measured mean arterial pressure (MAP), cardiac output (Q), and forearm blood flow (FBF) during mild cycle ergometer exercise (77 W) in 14 volunteers in the supine position with and without lower-body negative pressure (LBNP). During exercise, MAP averaged 103 +/- 2 mmHg and was not altered by LBNP (-10, -20, or -40 mmHg). Steady-state Q during exercise was reduced from 10.2 +/- 0.5 to 9.2 +/- 0.5 l/min (P less than 0.05) by application of -10 mmHg LBNP, whereas heart rate (97 +/- 3 beats/min) was unchanged. MAP was maintained during -10 mmHg LBNP by an increase in total systemic vascular resistance (TSVR) from 10.3 +/- 0.5 to 11.4 +/- 0.6 U and forearm vascular resistance (FVR) from 17.5 +/- 1.9 to 23.3 +/- 2.6 U. The absence of a reflex tachycardia or reduction in arterial pulse pressure during -10 mmHg LBNP supports the hypothesis that the increase in TSVR and FVR results primarily from the unloading of CP mechanoreceptors. Because CP mechanoreceptor unloading during exercise stimulates reflex circulatory adjustments that act to defend the elevated MAP, we conclude that the elevation in MAP during exercise is regulated and not merely the consequence of differential changes in Q and TSVR. In addition, a major portion of the reduction in FBF in our experimental conditions occurs in the cutaneous circulation. As such, these data support the hypothesis that CP baroreflex control of cutaneous vasomotor tone is preserved during mild dynamic exercise.