Interval type-2 credibilistic clustering for pattern recognition

This paper presents a new approach to interval type-2 fuzzy clustering. In order to consider compactness within the clusters and separation of them simultaneously, the objective function of this paper is designed such that it generates both degrees of membership and non-membership of each data in each cluster, and integrates them using credibility concept. Also, a new approach to separation of clusters is proposed and utilized in designing the objective function. In this approach, the borders of clusters and therefore their compactness contribute in attaining their separation. So, the separation of clusters is not assessed only by the distance of their centers. The credibility degrees are transformed to interval type-2 form to handle different sources of uncertainty. Finally, a new validity index to characterize the number of clusters based on proposed approach to separation of clusters and Choquet integrals are proposed. The advantages of paper contributions are illustrated using several examples. A new objective function-based fuzzy clustering is introduced using credibility concept.A new approach to separation of clusters is presented.A new validity index is designed by proposed approach to separation and Choquet integral.The obtained results show that proposed model can handle different types of clusters.

[1]  Derek A. Linkens,et al.  Rule-base self-generation and simplification for data-driven fuzzy models , 2004, Fuzzy Sets Syst..

[2]  Frank Chung-Hoon Rhee,et al.  An interval type-2 fuzzy K-nearest neighbor , 2003, The 12th IEEE International Conference on Fuzzy Systems, 2003. FUZZ '03..

[3]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .

[4]  Doheon Lee,et al.  On cluster validity index for estimation of the optimal number of fuzzy clusters , 2004, Pattern Recognit..

[5]  Soon-H. Kwon Cluster validity index for fuzzy clustering , 1998 .

[6]  Kenneth G. Manton,et al.  Fuzzy Cluster Analysis , 2005 .

[7]  L. Zadeh Fuzzy sets as a basis for a theory of possibility , 1999 .

[8]  Baoding Liu Uncertainty Theory: An Introduction to its Axiomatic Foundations , 2004 .

[9]  M. Sugeno,et al.  An interpretation of fuzzy measures and the Choquet integral as an integral with respect to a fuzzy , 1989 .

[10]  菅野 道夫,et al.  Theory of fuzzy integrals and its applications , 1975 .

[11]  Y. Fukuyama,et al.  A new method of choosing the number of clusters for the fuzzy c-mean method , 1989 .

[12]  I. Burhan Türksen,et al.  Entropy assessment for type-2 fuzziness , 2004, 2004 IEEE International Conference on Fuzzy Systems (IEEE Cat. No.04CH37542).

[13]  M. P. Windham Cluster validity for fuzzy clustering algorithms , 1981 .

[14]  Frank Chung-Hoon Rhee,et al.  Uncertain Fuzzy Clustering: Interval Type-2 Fuzzy Approach to $C$-Means , 2007, IEEE Transactions on Fuzzy Systems.

[15]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[16]  J. Bezdek Numerical taxonomy with fuzzy sets , 1974 .

[17]  I. Türksen,et al.  Upper and lower values for the level of fuzziness in FCM , 2007, Inf. Sci..

[18]  Frank Chung-Hoon Rhee,et al.  Interval type-2 fuzzy C-means using multiple kernels , 2013, 2013 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE).

[19]  Mohammad Hossein Fazel Zarandi,et al.  Interval type-2 fuzzy expert system for prediction of carbon monoxide concentration in mega-cities , 2012, Appl. Soft Comput..

[20]  R. Kruse,et al.  An extension to possibilistic fuzzy cluster analysis , 2004, Fuzzy Sets Syst..

[21]  Frank Chung-Hoon Rhee,et al.  An interval type-2 fuzzy perceptron , 2002, 2002 IEEE World Congress on Computational Intelligence. 2002 IEEE International Conference on Fuzzy Systems. FUZZ-IEEE'02. Proceedings (Cat. No.02CH37291).

[22]  Liu Rui,et al.  Fuzzy c-Means Clustering Algorithm , 2008 .

[23]  G. Tsekouras,et al.  A new approach for measuring the validity of the fuzzy c -means algorithm , 2004 .

[24]  Jian Xiao,et al.  A modified interval type-2 fuzzy C-means algorithm with application in MR image segmentation , 2013, Pattern Recognit. Lett..

[25]  Gwilym M. Jenkins,et al.  Time series analysis, forecasting and control , 1972 .

[26]  James C. Bezdek,et al.  On cluster validity for the fuzzy c-means model , 1995, IEEE Trans. Fuzzy Syst..

[27]  Ronald R. Yager,et al.  A measurement-informational discussion of fuzzy union and intersection , 1979 .

[28]  F. Rhee,et al.  A type-2 fuzzy C-means clustering algorithm , 2001, Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference (Cat. No. 01TH8569).

[29]  Jian Zhou,et al.  A modified hybrid method of spatial credibilistic clustering and particle swarm optimization , 2011, Soft Comput..

[30]  Qian Wang,et al.  The range of the value for the fuzzifier of the fuzzy c-means algorithm , 2012, Pattern Recognit. Lett..

[31]  Young-Il Kim,et al.  A cluster validation index for GK cluster analysis based on relative degree of sharing , 2004, Inf. Sci..

[32]  James C. Bezdek,et al.  Some new indexes of cluster validity , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[33]  Ravi Kothari,et al.  On finding the number of clusters , 1999, Pattern Recognit. Lett..

[34]  A. Seif,et al.  Multi-group classification using fuzzy correlation , 1980 .

[35]  J. Mendel Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions , 2001 .

[36]  F. Chung-Hoon Rhee Uncertain Fuzzy Clustering: Insights and Recommendations , 2007 .

[37]  Jonathan D. Cryer,et al.  Time Series Analysis , 1986 .

[38]  Qinghua Zeng,et al.  A Cluster Validity Method Based on Entropy and Degree of Oppositeness , 2013 .

[39]  Shengrui Wang,et al.  A new efficient validity index for fuzzy clustering , 2004, Proceedings of 2004 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.04EX826).

[40]  Zeng-qi Sun,et al.  Improved validation index for fuzzy clustering , 2005, Proceedings of the 2005, American Control Conference, 2005..

[41]  J. Bezdek Cluster Validity with Fuzzy Sets , 1973 .

[42]  Mohammad Hossein Fazel Zarandi,et al.  A new credibilistic clustering algorithm , 2014, Inf. Sci..

[43]  Noureddine Zahid,et al.  A new cluster-validity for fuzzy clustering , 1999, Pattern Recognit..

[44]  J. Zhou,et al.  Spatial credibilistic clustering algorithm in noise image segmentation , 2007, 2007 IEEE International Conference on Industrial Engineering and Engineering Management.

[45]  Michio Sugeno,et al.  A Model of Human Evaluation Process Using Fuzzy Measure , 1985, Int. J. Man Mach. Stud..

[46]  Xiang Li,et al.  A Sufficient and Necessary Condition for Credibility Measures , 2006, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[47]  James M. Keller,et al.  The possibilistic C-means algorithm: insights and recommendations , 1996, IEEE Trans. Fuzzy Syst..

[48]  Jian Zhou,et al.  Hybrid Method of Spatial Credibilistic Clustering and Particle Swarm Optimization: Discussion and Application , 2009, 2009 Sixth International Conference on Fuzzy Systems and Knowledge Discovery.

[49]  Jerry M. Mendel,et al.  A comparative study of ranking methods, similarity measures and uncertainty measures for interval type-2 fuzzy sets , 2009, Inf. Sci..

[50]  Isak Gath,et al.  Unsupervised Optimal Fuzzy Clustering , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[51]  Weina Wang,et al.  On fuzzy cluster validity indices , 2007, Fuzzy Sets Syst..

[52]  Michio Sugeno,et al.  A fuzzy-logic-based approach to qualitative modeling , 1993, IEEE Trans. Fuzzy Syst..

[53]  E. Trauwaert On the meaning of Dunn's partition coefficient for fuzzy clusters , 1988 .

[54]  James M. Keller,et al.  A possibilistic approach to clustering , 1993, IEEE Trans. Fuzzy Syst..

[55]  Yian-Kui Liu,et al.  Expected value of fuzzy variable and fuzzy expected value models , 2002, IEEE Trans. Fuzzy Syst..

[56]  Frank Chung-Hoon Rhee,et al.  An interval type-2 fuzzy C spherical shells algorithm , 2004, 2004 IEEE International Conference on Fuzzy Systems (IEEE Cat. No.04CH37542).

[57]  P. Jaccard,et al.  Etude comparative de la distribution florale dans une portion des Alpes et des Jura , 1901 .

[58]  Michalis Vazirgiannis,et al.  Clustering algorithms and validity measures , 2001, Proceedings Thirteenth International Conference on Scientific and Statistical Database Management. SSDBM 2001.

[59]  James M. Keller,et al.  A possibilistic fuzzy c-means clustering algorithm , 2005, IEEE Transactions on Fuzzy Systems.

[60]  Ujjwal Maulik,et al.  Validity index for crisp and fuzzy clusters , 2004, Pattern Recognit..

[61]  J. C. Peters,et al.  Fuzzy Cluster Analysis : A New Method to Predict Future Cardiac Events in Patients With Positive Stress Tests , 1998 .