Inoculation of Herbaspirillum seropedicae strain SmR1 increases biomass in maize roots DKB 390 variety in the early stages of plant development

[1]  S. Kumawat,et al.  Microbial inoculants: potential tool for sustainability of agricultural production systems , 2020, Archives of Microbiology.

[2]  H. Soares,et al.  Promising bacterial genera for agricultural practices: An insight on plant growth-promoting properties and microbial safety aspects. , 2019, The Science of the total environment.

[3]  Kefeng Li,et al.  Plant growth promoting bacteria in agriculture: Two sides of a coin , 2019, Applied Soil Ecology.

[4]  J. Rilling,et al.  Current opinion and perspectives on the methods for tracking and monitoring plant growth‒promoting bacteria , 2019, Soil Biology and Biochemistry.

[5]  G. Stacey,et al.  Importance of Poly-3-Hydroxybutyrate Metabolism to the Ability of Herbaspirillum seropedicae To Promote Plant Growth , 2019, Applied and Environmental Microbiology.

[6]  V. Reis,et al.  Modulation of nitrogen metabolism of maize plants inoculated with Azospirillum brasilense and Herbaspirillum seropedicae , 2018, Archives of Microbiology.

[7]  A. C. Arisi,et al.  Herbaspirillum seropedicae promotes maize growth but fails to control the maize leaf anthracnose , 2018, Physiology and Molecular Biology of Plants.

[8]  Donald L. Smith,et al.  Plant Growth-Promoting Rhizobacteria: Context, Mechanisms of Action, and Roadmap to Commercialization of Biostimulants for Sustainable Agriculture , 2018, Front. Plant Sci..

[9]  A. Sessitsch,et al.  Maintenance and assessment of cell viability in formulation of non‐sporulating bacterial inoculants , 2017, Microbial biotechnology.

[10]  T. Prasad,et al.  Plant growth promoting rhizobacteria for sustainable agricultural practices with special reference to biotic and abiotic stresses , 2018, Plant Growth Regulation.

[11]  F. Olivares,et al.  Plant growth promoting bacteria and humic substances: crop promotion and mechanisms of action , 2017, Chemical and Biological Technologies in Agriculture.

[12]  A. C. Arisi,et al.  Tools to evaluate Herbaspirillum seropedicae abundance and nifH and rpoC expression in inoculated maize seedlings grown in vitro and in soil , 2017, Plant Growth Regulation.

[13]  V. M. Reis,et al.  Produtividade de milho na presença de doses de N e de inoculação de Herbaspirillum seropedicae , 2016 .

[14]  G. Stacey,et al.  Differential growth responses of Brachypodium distachyon genotypes to inoculation with plant growth promoting rhizobacteria , 2016, Plant Molecular Biology.

[15]  Shachi Shah,et al.  Impact of Fertilizers and Pesticides on Soil Microflora in Agriculture , 2016 .

[16]  E. Lichtfouse Sustainable Agriculture Reviews , 2016, Sustainable Agriculture Reviews.

[17]  I. Jaime,et al.  A novel real-time PCR assay for the specific identification and quantification of Weissella viridescens in blood sausages. , 2015, International journal of food microbiology.

[18]  Adriana Ambrosini,et al.  Plant growth-promoting bacteria as inoculants in agricultural soils , 2015, Genetics and molecular biology.

[19]  E. M. Souza,et al.  Quantification of Azospirillum brasilense FP2 Bacteria in Wheat Roots by Strain-Specific Quantitative PCR , 2015, Applied and Environmental Microbiology.

[20]  M. Pontin,et al.  Azospirillum brasilense ameliorates the response of Arabidopsis thaliana to drought mainly via enhancement of ABA levels. , 2015, Physiologia plantarum.

[21]  V. Reis,et al.  Differential plant growth promotion and nitrogen fixation in two genotypes of maize by several Herbaspirillum inoculants , 2014, Plant and Soil.

[22]  M. R. Espuny,et al.  Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production. , 2014, Microbiological research.

[23]  A. C. Arisi,et al.  Real-Time PCR Quantification of the Plant Growth Promoting Bacteria Herbaspirillum seropedicae Strain SmR1 in Maize Roots , 2014, Molecular Biotechnology.

[24]  C. Patten,et al.  Indole-3-acetic acid in plant–microbe interactions , 2014, Antonie van Leeuwenhoek.

[25]  A. C. Arisi,et al.  Gene expression analysis of maize seedlings (DKB240 variety) inoculated with plant growth promoting bacterium Herbaspirillum seropedicae , 2014, Symbiosis.

[26]  A. C. Arisi,et al.  Real time PCR detection targeting nifA gene of plant growth promoting bacteria Azospirillum brasilense strain FP2 in maize roots , 2013, Symbiosis.

[27]  B. Touraine,et al.  Plant growth-promoting rhizobacteria and root system functioning , 2013, Front. Plant Sci..

[28]  F. Olivares,et al.  A combination of humic substances and Herbaspirillum seropedicae inoculation enhances the growth of maize (Zea mays L.) , 2013, Plant and Soil.

[29]  A. Hemerly,et al.  Early responses of rice (Oryza sativa L.) seedlings to inoculation with beneficial diazotrophic bacteria are dependent on plant and bacterial genotypes , 2012, Plant and Soil.

[30]  R. Wassem,et al.  Genomic comparison of the endophyte Herbaspirillum seropedicae SmR1 and the phytopathogen Herbaspirillum rubrisubalbicans M1 by suppressive subtractive hybridization and partial genome sequencing. , 2012, FEMS microbiology ecology.

[31]  R. Wassem,et al.  Herbaspirillum-plant interactions: microscopical, histological and molecular aspects , 2012, Plant and Soil.

[32]  M. Petzl-Erler,et al.  Genome of Herbaspirillum seropedicae Strain SmR1, a Specialized Diazotrophic Endophyte of Tropical Grasses , 2011, PLoS genetics.

[33]  J. Vanderleyden,et al.  Auxin and plant-microbe interactions. , 2011, Cold Spring Harbor perspectives in biology.

[34]  D. Maheshwari,et al.  Plant growth and health promoting bacteria , 2011 .

[35]  B. Zehra,et al.  Bio-fertilizers in Organic Agriculture , 2010 .

[36]  Daniel Muller,et al.  Development of a real-time PCR method to quantify the PGPR strain Azospirillum lipoferum CRT1 on maize seedlings , 2010 .

[37]  Y. Bashan,et al.  Chapter Two – How the Plant Growth-Promoting Bacterium Azospirillum Promotes Plant Growth—A Critical Assessment , 2010 .

[38]  F. Pedrosa,et al.  Inoculation with selected strains of Azospirillum brasilense and A. lipoferum improves yields of maize and wheat in Brazil , 2010, Plant and Soil.

[39]  V. D. Baldani,et al.  Seleção de inoculantes à base de turfa contendo bactérias diazotróficas em duas variedades de arroz - DOI: 10.4025/actasciagron.v32i1.732 , 2009 .

[40]  R. Wassem,et al.  Early colonization pattern of maize (Zea mays L. Poales, Poaceae) roots by Herbaspirillum seropedicae (Burkholderiales, Oxalobacteraceae) , 2008 .

[41]  Tong Zhang,et al.  Applications of real-time polymerase chain reaction for quantification of microorganisms in environmental samples , 2006, Applied Microbiology and Biotechnology.

[42]  V. M. Reis,et al.  Efeito da inoculação de Azospirillum e Herbaspirillum na produção de compostos indólicos em plântulas de milho e arroz , 2004 .

[43]  F. Olivares,et al.  Occurrence of the endophytic diazotrophs Herbaspirillum spp. in roots, stems, and leaves, predominantly of Gramineae , 1996, Biology and Fertility of Soils.

[44]  F. Pedrosa,et al.  Endophytic Herbaspirillum seropedicae expresses nif genes in gramineous plants. , 2003, FEMS microbiology ecology.

[45]  J. Vanderleyden,et al.  Effect of inoculation with wild type Azospirillum brasilense and A. irakense strains on development and nitrogen uptake of spring wheat and grain maize , 2002, Biology and Fertility of Soils.

[46]  F. Pedrosa,et al.  Effect of nitrogen compounds on nitrogenase activity in Herbaspirillum seropedicae SMR1 , 1997 .

[47]  V. Baldani,et al.  Characterization of Herbaspirillum seropedicae gen. nov., sp. nov., a Root-Associated Nitrogen-Fixing Bacterium , 1986 .