Design of a low-power 3.5-GHz broad-band CMOS transimpedance amplifier for optical transceivers

This paper describes a novel low-power low-noise CMOS voltage-current feedback transimpedance amplifier design using a low-cost Agilent 0.5-/spl mu/m 3M1P CMOS process technology. Theoretical foundations for this transimpedance amplifier by way of gain, bandwidth and noise analysis are developed. The bandwidth of the amplifier was extended using the inductive peaking technique, and, simulation results indicated a -3-dB bandwidth of 3.5 GHz with a transimpedance gain of /spl ap/60 dBohms. The dynamic range of the amplifier was wide enough to enable an output peak-to-peak voltage swing of around 400 mV for a test input current swing of 100 /spl mu/A. The output noise voltage spectral density was 12 nV//spl radic/Hz (with a peak of /spl ap/25 nV//spl radic/Hz), while the input-referred noise current spectral density was below 20 pA//spl radic/Hz within the amplifier frequency band. The amplifier consumes only around 5 mA from a 3.3-V power supply. A test chip implementing the transimpedance amplifier was also fabricated using the low-cost CMOS process.

[1]  A. A. Abidi Gigahertz transresistance amplifiers in fine line NMOS , 1984 .

[2]  Sung Min Park,et al.  1.25-Gb/s regulated cascode CMOS transimpedance amplifier for Gigabit Ethernet applications , 2004, IEEE Journal of Solid-State Circuits.

[3]  Sung Min Park,et al.  A packaged low-noise high-speed regulated cascode transimpedance amplifier using a 0.6µm N-well CMOS technology , 2000, Proceedings of the 26th European Solid-State Circuits Conference.

[4]  Nikos Haralabidis,et al.  A 1 GHz CMOS transimpedance amplifier for chip-to-chip optical interconnects , 2000, 2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353).

[5]  B. Razavi,et al.  A 622 Mb/s 4.5 pA//spl radic/Hz CMOS transimpedance amplifier [for optical receiver front-end] , 2000, 2000 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.00CH37056).

[6]  Behzad Razavi,et al.  RF Microelectronics , 1997 .

[7]  Stephen P. Boyd,et al.  Bandwidth extension in CMOS with optimized on-chip inductors , 2000, IEEE Journal of Solid-State Circuits.

[8]  Eric A. M. Klumperink,et al.  Generating all two-MOS-transistor amplifiers leads to new wide-band LNAs , 2000, IEEE J. Solid State Circuits.

[9]  Thomas H. Lee,et al.  The Design of CMOS Radio-Frequency Integrated Circuits: RF CIRCUITS THROUGH THE AGES , 2003 .

[10]  Thomas Toifl,et al.  Wideband CMOS transimpedance amplifier , 2003 .

[11]  B. Razavi The Modeling, Characterization, and Design of Monolithic Inductors for Silicon RF IC's , 2003 .

[12]  Behzad Razavi,et al.  Design of Analog CMOS Integrated Circuits , 1999 .

[13]  Ryoji Takeyari,et al.  A wide-dynamic-range, high-transimpedance Si bipolar preamplifier IC for 10-Gb/s optical fiber links , 1997 .

[14]  R. Havens,et al.  Noise modeling for RF CMOS circuit simulation , 2003 .

[15]  Willy Sansen,et al.  Low-noise, low-distortion CMOS AM wide-band amplifiers matching a capacitive source , 1990 .

[16]  Christofer Toumazou,et al.  Integrated high frequency low-noise current-mode optical transimpedance preamplifiers: theory and practice , 1995 .

[17]  Shih-Cheng Yang,et al.  2 Gbit/s transimpedance amplifier fabricated by 0.35 /spl mu/m CMOS technologies , 2001 .

[18]  Christofer Toumazou,et al.  Wideband low noise CMOS transimpedance amplifier for gigaHertz operation , 1996 .

[19]  B. Jalali,et al.  1 Gbit/s fibre channel CMOS transimpedance amplifier , 1997 .

[20]  David A. Johns,et al.  Analog Integrated Circuit Design , 1996 .

[21]  S. M. Rezaul Hasan,et al.  High-performance transimpedance amplifier for OC-48 optical transceiver application , 2000, Other Conferences.