On the stability of the Kuramoto model of coupled nonlinear oscillators

We provide an analysis of the classic Kuramoto model of coupled nonlinear oscillators that goes beyond the existing results for all-to-all networks of identical oscillators. Our work is applicable to oscillator networks of arbitrary interconnection topology with uncertain natural frequencies. Using tools from spectral graph theory and control theory, we prove that for couplings above a critical value all the oscillators synchronize, resulting in convergence of all phase differences to a constant value, both in the case of identical natural frequencies as well as uncertain ones. We also provide a series of bounds for the critical values of the coupling strength.

[1]  J. Buck Synchronous Rhythmic Flashing of Fireflies , 1938, The Quarterly Review of Biology.

[2]  M. Mead,et al.  Cybernetics , 1953, The Yale Journal of Biology and Medicine.

[3]  N. Wiener,et al.  Nonlinear Problems in Random Theory , 1964 .

[4]  A. Winfree Biological rhythms and the behavior of populations of coupled oscillators. , 1967, Journal of theoretical biology.

[5]  Yoshiki Kuramoto,et al.  In International Symposium on Mathematical Problems in Theoretical Physics , 1975 .

[6]  Huzihiro Araki,et al.  International Symposium on Mathematical Problems in Theoretical Physics , 1975 .

[7]  Charles S. Peskin,et al.  Mathematical aspects of heart physiology , 1975 .

[8]  E. Pye,et al.  Cell density dependence of oscillatory metabolism , 1976, Nature.

[9]  A. Winfree The geometry of biological time , 1991 .

[10]  Yoshiki Kuramoto,et al.  Chemical Oscillations, Waves, and Turbulence , 1984, Springer Series in Synergetics.

[11]  J. Jalife,et al.  Mechanisms of Sinoatrial Pacemaker Synchronization: A New Hypothesis , 1987, Circulation research.

[12]  J. Buck Synchronous Rhythmic Flashing of Fireflies. II. , 1938, The Quarterly Review of Biology.

[13]  Leon O. Chua,et al.  Multimode oscillator analysis via integral manifolds part I: Non-resonant case , 1988 .

[14]  Hajime Takayama,et al.  Cooperative Dynamics in Complex Physical Systems , 1989 .

[15]  R. C. Compton,et al.  Quasi-optical power combining using mutually synchronized oscillator arrays , 1991 .

[16]  J. L. Hemmen,et al.  Lyapunov function for the Kuramoto model of nonlinearly coupled oscillators , 1993 .

[17]  Martin W. McCall,et al.  Numerical simulation of a large number of coupled lasers , 1993 .

[18]  S H Strogatz,et al.  Coupled oscillators and biological synchronization. , 1993, Scientific American.

[19]  Steven H. Strogatz,et al.  Norbert Wiener’s Brain Waves , 1994 .

[20]  S. Strogatz,et al.  Constants of motion for superconducting Josephson arrays , 1994 .

[21]  Vicsek,et al.  Novel type of phase transition in a system of self-driven particles. , 1995, Physical review letters.

[22]  Fan Chung,et al.  Spectral Graph Theory , 1996 .

[23]  Steven H. Strogatz,et al.  Cellular Construction of a Circadian Clock: Period Determination in the Suprachiasmatic Nuclei , 1997, Cell.

[24]  S. Strogatz,et al.  Frequency locking in Josephson arrays: Connection with the Kuramoto model , 1998 .

[25]  David J. Low,et al.  Following the crowd , 2000 .

[26]  S. Strogatz Exploring complex networks , 2001, Nature.

[27]  C. D. Meyer,et al.  Comparison of perturbation bounds for the stationary distribution of a Markov chain , 2001 .

[28]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[29]  Tamas Vicsek,et al.  A question of scale , 2001, Nature.

[30]  Mauricio Barahona,et al.  Synchronization in small-world systems. , 2002, Physical review letters.

[31]  E. W. Justh,et al.  A Simple Control Law for UAV Formation Flying , 2002 .

[32]  George J. Pappas,et al.  Stable flocking of mobile agents, part I: fixed topology , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[33]  George J. Pappas,et al.  Stable flocking of mobile agents part I: dynamic topology , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[34]  R. Murray,et al.  Consensus protocols for networks of dynamic agents , 2003, Proceedings of the 2003 American Control Conference, 2003..

[35]  Steven H. Strogatz,et al.  Sync: The Emerging Science of Spontaneous Order , 2003 .

[36]  Luc Moreau,et al.  Leaderless coordination via bidirectional and unidirectional time-dependent communication , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[37]  Jie Lin,et al.  Coordination of groups of mobile autonomous agents using nearest neighbor rules , 2003, IEEE Trans. Autom. Control..

[38]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[39]  Richard M. Murray,et al.  Consensus problems in networks of agents with switching topology and time-delays , 2004, IEEE Transactions on Automatic Control.

[40]  Jean-Jacques E. Slotine,et al.  On partial contraction analysis for coupled nonlinear oscillators , 2004, Biological Cybernetics.

[41]  Naomi Ehrich Leonard,et al.  Collective motion and oscillator synchronization , 2005 .

[42]  Monika Sharma,et al.  Chemical oscillations , 2006 .