Informed constrained spherical deconvolution (iCSD)

Diffusion-weighted (DW) magnetic resonance imaging (MRI) is a noninvasive imaging method, which can be used to investigate neural tracts in the white matter (WM) of the brain. However, the voxel sizes used in DW-MRI are relatively large, making DW-MRI prone to significant partial volume effects (PVE). These PVEs can be caused both by complex (e.g. crossing) WM fiber configurations and non-WM tissue, such as gray matter (GM) and cerebrospinal fluid. High angular resolution diffusion imaging methods have been developed to correctly characterize complex WM fiber configurations, but significant non-WM PVEs are also present in a large proportion of WM voxels. In constrained spherical deconvolution (CSD), the full fiber orientation distribution function (fODF) is deconvolved from clinically feasible DW data using a response function (RF) representing the signal of a single coherently oriented population of fibers. Non-WM PVEs cause a loss of precision in the detected fiber orientations and an emergence of false peaks in CSD, more prominently in voxels with GM PVEs. We propose a method, informed CSD (iCSD), to improve the estimation of fODFs under non-WM PVEs by modifying the RF to account for non-WM PVEs locally. In practice, the RF is modified based on tissue fractions estimated from high-resolution anatomical data. Results from simulation and in-vivo bootstrapping experiments demonstrate a significant improvement in the precision of the identified fiber orientations and in the number of false peaks detected under GM PVEs. Probabilistic whole brain tractography shows fiber density is increased in the major WM tracts and decreased in subcortical GM regions. The iCSD method significantly improves the fiber orientation estimation at the WM-GM interface, which is especially important in connectomics, where the connectivity between GM regions is analyzed.

[1]  P. Basser,et al.  In vivo fiber tractography using DT‐MRI data , 2000, Magnetic resonance in medicine.

[2]  Alan Connelly,et al.  MRtrix: Diffusion tractography in crossing fiber regions , 2012, Int. J. Imaging Syst. Technol..

[3]  Kalvis M. Jansons,et al.  Persistent angular structure: new insights from diffusion magnetic resonance imaging data , 2003 .

[4]  Jan Sijbers,et al.  ExploreDTI: a graphical toolbox for processing, analyzing, and visualizing diffusion MR data , 2009 .

[5]  J Sijbers,et al.  Mathematical framework for simulating diffusion tensor MR neural fiber bundles , 2005, Magnetic resonance in medicine.

[6]  Derek K. Jones Studying connections in the living human brain with diffusion MRI , 2008, Cortex.

[7]  Alan Connelly,et al.  Robust determination of the fibre orientation distribution in diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution , 2007, NeuroImage.

[8]  Daniel C. Alexander,et al.  Maximum Entropy Spherical Deconvolution for Diffusion MRI , 2005, IPMI.

[9]  N. Intrator,et al.  Free water elimination and mapping from diffusion MRI , 2009, Magnetic resonance in medicine.

[10]  Alan Connelly,et al.  Anatomically-constrained tractography: Improved diffusion MRI streamlines tractography through effective use of anatomical information , 2012, NeuroImage.

[11]  Mark W. Woolrich,et al.  Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? , 2007, NeuroImage.

[12]  Rachid Deriche,et al.  Quantitative Comparison of Reconstruction Methods for Intra-Voxel Fiber Recovery From Diffusion MRI , 2014, IEEE Transactions on Medical Imaging.

[13]  Stephen M. Smith,et al.  Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm , 2001, IEEE Transactions on Medical Imaging.

[14]  S. Schoenberg,et al.  Measurement of signal‐to‐noise ratios in MR images: Influence of multichannel coils, parallel imaging, and reconstruction filters , 2007, Journal of magnetic resonance imaging : JMRI.

[15]  P. Basser,et al.  Statistical artifacts in diffusion tensor MRI (DT‐MRI) caused by background noise , 2000, Magnetic resonance in medicine.

[16]  J. E. Tanner,et al.  Spin diffusion measurements : spin echoes in the presence of a time-dependent field gradient , 1965 .

[17]  N. Makris,et al.  High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity , 2002, Magnetic resonance in medicine.

[18]  Jacques-Donald Tournier,et al.  Diffusion tensor imaging and beyond , 2011, Magnetic resonance in medicine.

[19]  Susumu Mori,et al.  Fiber tracking: principles and strategies – a technical review , 2002, NMR in biomedicine.

[20]  Alexander Leemans,et al.  Disruption of the Cerebral White Matter Network Is Related to Slowing of Information Processing Speed in Patients With Type 2 Diabetes , 2013, Diabetes.

[21]  A. Connelly,et al.  White matter fiber tractography: why we need to move beyond DTI. , 2013, Journal of neurosurgery.

[22]  P. Basser,et al.  The b matrix in diffusion tensor echo‐planar imaging , 1997, Magnetic resonance in medicine.

[23]  Manuel Graña,et al.  Model‐based analysis of multishell diffusion MR data for tractography: How to get over fitting problems , 2012, Magnetic resonance in medicine.

[24]  A. Connelly,et al.  Determination of the appropriate b value and number of gradient directions for high‐angular‐resolution diffusion‐weighted imaging , 2013, NMR in biomedicine.

[25]  Olaf Sporns,et al.  MR connectomics: Principles and challenges , 2010, Journal of Neuroscience Methods.

[26]  Derek K. Jones,et al.  Diffusion tensor imaging. , 2011, Methods in molecular biology.

[27]  Alan Connelly,et al.  Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution , 2004, NeuroImage.

[28]  Carl-Fredrik Westin,et al.  Multi-Diffusion-Tensor Fitting via Spherical Deconvolution: A Unifying Framework , 2010, MICCAI.

[29]  D. Parker,et al.  Analysis of partial volume effects in diffusion‐tensor MRI , 2001, Magnetic resonance in medicine.

[30]  Chun-Hung Yeh,et al.  Resolving crossing fibres using constrained spherical deconvolution: Validation using diffusion-weighted imaging phantom data , 2008, NeuroImage.

[31]  Giuseppe Scotti,et al.  A Model-Based Deconvolution Approach to Solve Fiber Crossing in Diffusion-Weighted MR Imaging , 2007, IEEE Transactions on Biomedical Engineering.

[32]  Giuseppe Scotti,et al.  A modified damped Richardson–Lucy algorithm to reduce isotropic background effects in spherical deconvolution , 2010, NeuroImage.

[33]  Derek K. Jones,et al.  Temporal association tracts and the breakdown of episodic memory in mild cognitive impairment , 2012, Neurology.

[34]  P. Basser,et al.  Estimation of the effective self-diffusion tensor from the NMR spin echo. , 1994, Journal of magnetic resonance. Series B.

[35]  Steen Moeller,et al.  Pushing spatial and temporal resolution for functional and diffusion MRI in the Human Connectome Project , 2013, NeuroImage.

[36]  L. Frank Anisotropy in high angular resolution diffusion‐weighted MRI , 2001, Magnetic resonance in medicine.

[37]  Rachid Deriche,et al.  Deterministic and Probabilistic Tractography Based on Complex Fibre Orientation Distributions , 2009, IEEE Transactions on Medical Imaging.

[38]  Quan Zhou,et al.  Resolving complex fibre architecture by means of sparse spherical deconvolution in the presence of isotropic diffusion , 2014, Medical Imaging.

[39]  Jan Sijbers,et al.  Probabilistic fiber tracking using the residual bootstrap with constrained spherical deconvolution , 2011, Human brain mapping.

[40]  Stephen M. Smith,et al.  A Bayesian model of shape and appearance for subcortical brain segmentation , 2011, NeuroImage.

[41]  Alexander Leemans,et al.  The B‐matrix must be rotated when correcting for subject motion in DTI data , 2009, Magnetic resonance in medicine.

[42]  N. Ramsey,et al.  Reliability of two clinically relevant fiber pathways reconstructed with constrained spherical deconvolution , 2013, Magnetic resonance in medicine.

[43]  Katherine A. Johnson,et al.  White Matter and Visuospatial Processing in Autism: A Constrained Spherical Deconvolution Tractography Study , 2013, Autism research : official journal of the International Society for Autism Research.

[44]  Max A. Viergever,et al.  Partial volume effect as a hidden covariate in DTI analyses , 2011, NeuroImage.

[45]  Karl J. Friston,et al.  Human Brain Function, Second Edition , 2004 .

[46]  Max A. Viergever,et al.  Recursive calibration of the fiber response function for spherical deconvolution of diffusion MRI data , 2014, NeuroImage.

[47]  Derek K. Jones,et al.  Diffusion‐tensor MRI: theory, experimental design and data analysis – a technical review , 2002 .

[48]  P. Hagmann,et al.  Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging , 2005, Magnetic resonance in medicine.

[49]  Stephen M Smith,et al.  Fast robust automated brain extraction , 2002, Human brain mapping.

[50]  M. Raichle,et al.  Tracking neuronal fiber pathways in the living human brain. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[51]  Alan Connelly,et al.  Track-density imaging (TDI): Super-resolution white matter imaging using whole-brain track-density mapping , 2010, NeuroImage.

[52]  Derek K. Jones,et al.  Investigating the prevalence of complex fiber configurations in white matter tissue with diffusion magnetic resonance imaging , 2013, Human brain mapping.

[53]  Derek K. Jones,et al.  Determining and visualizing uncertainty in estimates of fiber orientation from diffusion tensor MRI , 2003, Magnetic resonance in medicine.

[54]  Lester Melie-García,et al.  Deconvolution in diffusion spectrum imaging , 2010, NeuroImage.

[55]  J. Mugler,et al.  Three‐dimensional magnetization‐prepared rapid gradient‐echo imaging (3D MP RAGE) , 1990, Magnetic resonance in medicine.

[56]  Paul L. Rosin,et al.  A pitfall in the reconstruction of fibre ODFs using spherical deconvolution of diffusion MRI data , 2013, NeuroImage.

[57]  Ben Jeurissen,et al.  Structural neuroimaging correlates of allelic variation of the BDNF val66met polymorphism , 2014, NeuroImage.

[58]  Jan Sijbers,et al.  Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data , 2014, NeuroImage.

[59]  Stefan Skare,et al.  How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging , 2003, NeuroImage.

[60]  Jeremy D. Schmahmann,et al.  Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers , 2008, NeuroImage.

[61]  Katherine A. Johnson,et al.  Abnormal functional connectivity during visuospatial processing is associated with disrupted organisation of white matter in autism , 2013, Front. Hum. Neurosci..

[62]  D. Tuch Q‐ball imaging , 2004, Magnetic resonance in medicine.

[63]  Steen Moeller,et al.  Advances in diffusion MRI acquisition and processing in the Human Connectome Project , 2013, NeuroImage.

[64]  Timothy Edward John Behrens,et al.  Characterization and propagation of uncertainty in diffusion‐weighted MR imaging , 2003, Magnetic resonance in medicine.

[65]  Guy B. Williams,et al.  Inference of multiple fiber orientations in high angular resolution diffusion imaging , 2005, Magnetic resonance in medicine.

[66]  Rong Xu,et al.  Segmentation of Brain MRI , 2012 .

[67]  Jan Sijbers,et al.  Limbic and Callosal White Matter Changes in Euthymic Bipolar I Disorder: An Advanced Diffusion Magnetic Resonance Imaging Tractography Study , 2013, Biological Psychiatry.

[68]  Anthony C. Davison,et al.  Bootstrap Methods and Their Application , 1998 .

[69]  Derek K. Jones Diffusion MRI: Theory, methods, and applications , 2011 .

[70]  Karl J. Friston,et al.  Rigid Body Registration , 2003 .

[71]  R. Deriche,et al.  Regularized, fast, and robust analytical Q‐ball imaging , 2007, Magnetic resonance in medicine.

[72]  Alexander Leemans,et al.  The Effect of Lacunar Infarcts on White Matter Tract Integrity , 2013, Stroke.

[73]  Jacques-Donald Tournier,et al.  Alterations in the optic radiations of very preterm children—Perinatal predictors and relationships with visual outcomes☆ , 2013, NeuroImage: Clinical.

[74]  Derek K. Jones,et al.  How and how not to correct for CSF-contamination in diffusion MRI , 2012, NeuroImage.

[75]  Olaf Sporns,et al.  Complex network measures of brain connectivity: Uses and interpretations , 2010, NeuroImage.

[76]  O. Sporns,et al.  Complex brain networks: graph theoretical analysis of structural and functional systems , 2009, Nature Reviews Neuroscience.

[77]  A. Anderson Measurement of fiber orientation distributions using high angular resolution diffusion imaging , 2005, Magnetic resonance in medicine.

[78]  M. Sams,et al.  Constrained spherical deconvolution-based tractography and tract-based spatial statistics show abnormal microstructural organization in Asperger syndrome , 2015, Molecular Autism.

[79]  L. Frank Characterization of anisotropy in high angular resolution diffusion‐weighted MRI , 2002, Magnetic resonance in medicine.

[80]  Wilfried Philips,et al.  Isotropic non-white matter partial volume effects in constrained spherical deconvolution , 2014, Front. Neuroinform..

[81]  Jeff W. M. Bulte,et al.  Magnetic Resonance Neuroimaging , 2011, Methods in Molecular Biology.

[82]  P. Basser,et al.  MR diffusion tensor spectroscopy and imaging. , 1994, Biophysical journal.

[83]  M. Horsfield,et al.  Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging , 1999, Magnetic resonance in medicine.