A review of asymptotic convergence for general state space Markov chains

We review notions of small sets, -irreducibility, etc., and present a simple proof of asymptotic convergence of general state space Markov chains to their stationary distributions.

[1]  B. Jamison,et al.  Contributions to Doeblin's theory of Markov processes , 1967 .

[2]  S. Orey Lecture Notes on Limit Theorems for Markov Chain Transition Probabilities , 1971 .

[3]  J. Pitman On coupling of Markov chains , 1976 .

[4]  E. Nummelin Uniform and ratio limit theorems for Markov renewal and semi-regenerative processes on a general state space , 1978 .

[5]  K. Athreya,et al.  A New Approach to the Limit Theory of Recurrent Markov Chains , 1978 .

[6]  E. Nummelin General irreducible Markov chains and non-negative operators: List of symbols and notation , 1984 .

[7]  Adrian F. M. Smith,et al.  Bayesian computation via the gibbs sampler and related markov chain monte carlo methods (with discus , 1993 .

[8]  Upendra Dave,et al.  Applied Probability and Queues , 1987 .

[9]  A. W. Kemp,et al.  Applied Probability and Queues , 1989 .

[10]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[11]  T. Lindvall Lectures on the Coupling Method , 1992 .

[12]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[13]  S. Meyn,et al.  Computable Bounds for Geometric Convergence Rates of Markov Chains , 1994 .

[14]  J. Rosenthal Minorization Conditions and Convergence Rates for Markov Chain Monte Carlo , 1995 .

[15]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[16]  K. Athreya,et al.  ON THE CONVERGENCE OF THE MARKOV CHAIN SIMULATION METHOD , 1996 .

[17]  Sylvia Richardson,et al.  Markov Chain Monte Carlo in Practice , 1997 .

[18]  Gareth O. Roberts,et al.  Markov‐chain monte carlo: Some practical implications of theoretical results , 1998 .