Topological Space‐Time Photonic Transitions in Angular‐Momentum‐Biased Metasurfaces

In this paper, topological space‐time photonic transition of light in angular‐momentum‐biased metasurfaces is established, which yields a superposition of orbital‐angular‐momentum (OAM)‐carrying beams at distinct frequency harmonics upon scattering whose topological charges and frequency shifts are correlated. A reflective dielectric metasurface is considered that consists of silicon nanodisk heterostructures integrated with indium‐tin‐oxide and gate dielectric layers placed on a back mirror forming a dual‐gated field effect modulator. The metasurface is divided into several azimuthal sections wherein the nanodisk heterostructures are interconnected via biasing lines. Addressing each azimuthal section with radio‐frequency biasing signals separately allows for flexible implementation of different spatiotemporal modulation profiles. Active tuning of OAM states with high mode‐purity is demonstrated, which yields minimal cross‐talk between OAM channels in a mode‐multiplexed communication system. Moreover, the role of spatiotemporal modulation profile on the spectral and spatial diversity of OAM states is explored. It is shown that angular‐momentum‐biased metasurfaces allow opportunities for hybridized mode‐division and wavelength‐division multiple access through multiplexing and multicasting across distinct OAM states and wavelengths. The nonreciprocity of topological space‐time photonic transitions across the temporal frequency domain and Hilbert space of OAM states is also investigated giving rise to distinct twisted light channels in up‐ and down‐links.

[1]  A. Alú,et al.  Phase-Induced Frequency Conversion and Doppler Effect With Time-Modulated Metasurfaces , 2020, IEEE Transactions on Antennas and Propagation.

[2]  C. Caloz,et al.  Spacetime Metamaterials—Part II: Theory and Applications , 2020, IEEE Transactions on Antennas and Propagation.

[3]  H. Mosallaei,et al.  Time-Modulated Conducting Oxide Metasurfaces for Adaptive Multiple Access Optical Communication , 2020, IEEE Transactions on Antennas and Propagation.

[4]  Anthony Grbic,et al.  Serrodyne Frequency Translation Using Time-Modulated Metasurfaces , 2019, IEEE Transactions on Antennas and Propagation.

[5]  A. Kishk,et al.  Space-Time Modulation: Principles and Applications , 2019, IEEE Microwave Magazine.

[6]  A. Kozyrev,et al.  Time-varying Metasurfaces for Broadband Spectral Camouflage , 2019, Physical Review Applied.

[7]  S. Tretyakov,et al.  Theory and Design of Multifunctional Space-Time Metasurfaces , 2019, 1910.11812.

[8]  A. Alú,et al.  Beyond Chu's Limit with Floquet Impedance Matching. , 2019, Physical review letters.

[9]  Mali Gong,et al.  Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities , 2019, Light: Science & Applications.

[10]  H. Mosallaei,et al.  A Dynamically Modulated All‐Dielectric Metasurface Doublet for Directional Harmonic Generation and Manipulation in Transmission , 2019, Advanced Optical Materials.

[11]  Kasra Rouhi,et al.  Multi-bit graphene-based bias-encoded metasurfaces for real-time terahertz wavefront shaping: From controllable orbital angular momentum generation toward arbitrary beam tailoring , 2019, Carbon.

[12]  J. Pendry,et al.  Broadband Nonreciprocal Amplification in Luminal Metamaterials. , 2019, Physical review letters.

[13]  Alejandro Álvarez Melcón,et al.  Nonreciprocal Wavefront Engineering with Time-Modulated Gradient Metasurfaces , 2019, Physical Review Applied.

[14]  Vladimir M. Shalaev,et al.  Spatiotemporal light control with active metasurfaces , 2019, Science.

[15]  Douglas H. Werner,et al.  Recent Progress in Active Optical Metasurfaces , 2019, Advanced Optical Materials.

[16]  Youngbin Na,et al.  High-resolution refractometry using phase shifting interferometry based on spatial light modulator and vortex probe , 2019, Optics & Laser Technology.

[17]  Mikael Mazur,et al.  Dielectric Broadband Metasurfaces for Fiber Mode‐Multiplexed Communications , 2019, Advanced Optical Materials.

[18]  Hong‐Bo Sun,et al.  Tunable Metasurfaces Based on Active Materials , 2019, Advanced Functional Materials.

[19]  Wei Li,et al.  Propagation and self-healing properties of Bessel-Gaussian beam carrying orbital angular momentum in an underwater environment , 2019, Scientific Reports.

[20]  H. Atwater,et al.  Tunable all-dielectric metasurface for phase modulation of the reflected and transmitted light via permittivity tuning of indium tin oxide , 2019, Nanophotonics.

[21]  H. Mosallaei,et al.  Nonreciprocal optical links based on time-modulated nanoantenna arrays: Full-duplex communication , 2019, Physical Review B.

[22]  Sergei A. Tretyakov,et al.  Time-Varying Reactive Elements for Extreme Accumulation of Electromagnetic Energy , 2018, Physical Review Applied.

[23]  C. Caloz,et al.  Simultaneous Control of the Spatial and Temporal Spectra of Light With Space-Time Varying Metasurfaces , 2018, IEEE Transactions on Antennas and Propagation.

[24]  H. Mosallaei,et al.  Rigorous space-time coupled-wave analysis for patterned surfaces with temporal permittivity modulation [Invited] , 2018, Optical Materials Express.

[25]  D. Sounas,et al.  Tunable Orbital Angular Momentum Radiation from Angular-Momentum-Biased Microcavities. , 2018, Physical review letters.

[26]  Jian Wang,et al.  Recent advances on optical vortex generation , 2018, Nanophotonics.

[27]  Nan Zhou,et al.  Generating and synthesizing ultrabroadband twisted light using a compact silicon chip. , 2018, Optics letters.

[28]  S. K. Turitsyn,et al.  Transparent Dielectric Metasurfaces for Spatial Mode Multiplexing , 2018, Laser & Photonics Reviews.

[29]  A. Shlivinski,et al.  Beyond the Bode-Fano Bound: Wideband Impedance Matching for Short Pulses Using Temporal Switching of Transmission-Line Parameters. , 2018, Physical review letters.

[30]  Hailin Zhang,et al.  Orbital angular momentum generation method based on transformation electromagnetics. , 2018, Optics express.

[31]  H. Mosallaei,et al.  A Tunable Multigate Indium‐Tin‐Oxide‐Assisted All‐Dielectric Metasurface , 2018 .

[32]  Christophe Caloz,et al.  What is Nonreciprocity , 2018, 1804.00235.

[33]  H. Atwater,et al.  Dual-Gated Active Metasurface at 1550 nm with Wide (>300°) Phase Tunability. , 2018, Nano letters.

[34]  H. Mosallaei,et al.  Time-varying metamaterials based on graphene-wrapped microwires: Modeling and potential applications , 2018 .

[35]  H. Mosallaei,et al.  Electrically tunable harmonics in time-modulated metasurfaces for wavefront engineering , 2018, New Journal of Physics.

[36]  Andrea Alù,et al.  Exploiting the topological robustness of composite vortices in radiation systems , 2018 .

[37]  A. Alú,et al.  Non-reciprocal photonics based on time modulation , 2017 .

[38]  T. Zentgraf,et al.  Rotational Doppler shift induced by spin-orbit coupling of light at spinning metasurfaces , 2017 .

[39]  Jian Wang,et al.  On-chip orbital angular momentum modes generator and (de)multiplexer based on trench silicon waveguides. , 2017, Optics express.

[40]  Seung-hoon Han,et al.  Optical Circulation and Isolation Based on Indirect Photonic Transitions of Guided Resonance Modes , 2017 .

[41]  Shuangchun Wen,et al.  Geometric phase Doppler effect: when structured light meets rotating structured materials. , 2017, Optics express.

[42]  Xianzhong Chen,et al.  Multichannel Polarization‐Controllable Superpositions of Orbital Angular Momentum States , 2017, Advanced materials.

[43]  Erez Hasman,et al.  Multifunctional interleaved geometric-phase dielectric metasurfaces , 2017, Light: Science & Applications.

[44]  M. Brongersma,et al.  Dynamic Reflection Phase and Polarization Control in Metasurfaces. , 2017, Nano letters.

[45]  C. Caloz,et al.  Mixer-Duplexer-Antenna Leaky-Wave System Based on Periodic Space-Time Modulation , 2016, IEEE Transactions on Antennas and Propagation.

[46]  P. Maddalena,et al.  Spin-to-orbital angular momentum conversion in dielectric metasurfaces. , 2016, Optics express.

[47]  Yan Li,et al.  A Circularly Polarized Multimode Patch Antenna for the Generation of Multiple Orbital Angular Momentum Modes , 2017, IEEE Antennas and Wireless Propagation Letters.

[48]  Wiktor Walasik,et al.  Probing metamaterials with structured light. , 2016, Optics express.

[49]  Xianzhong Chen,et al.  Vector Vortex Beam Generation with a Single Plasmonic Metasurface , 2016 .

[50]  Jinghua Teng,et al.  Visible‐Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices , 2016, Advanced materials.

[51]  D. Tsai,et al.  Gate-Tunable Conducting Oxide Metasurfaces. , 2015, Nano letters.

[52]  Jian Wang,et al.  Simultaneous demultiplexing and steering of multiple orbital angular momentum modes , 2015, Scientific Reports.

[53]  G. Guo,et al.  On-chip generation and control of the vortex beam , 2015, 1509.08646.

[54]  Igal Brener,et al.  Polarization-Independent Silicon Metadevices for Efficient Optical Wavefront Control. , 2015, Nano letters.

[55]  V. Shalaev,et al.  Time-Varying Metasurfaces and Lorentz Non-Reciprocity , 2015, 1507.04836.

[56]  Siyuan Yu,et al.  Orbital angular momentum vertical-cavity surface-emitting lasers , 2015 .

[57]  Viktoriia E. Babicheva,et al.  Transparent conducting oxides for electro-optical plasmonic modulators , 2015 .

[58]  A. Alú,et al.  Space-time gradient metasurfaces , 2015, 1506.00690.

[59]  Jian Wang,et al.  Adaptive power-controllable orbital angular momentum (OAM) multicasting , 2015, Scientific Reports.

[60]  Jian Wang,et al.  Design of On-Chip N-Fold Orbital Angular Momentum Multicasting Using V-Shaped Antenna Array , 2015, Scientific Reports.

[61]  Shilie Zheng,et al.  Ultralow Reflectivity Spiral Phase Plate for Generation of Millimeter-wave OAM Beam , 2015, IEEE Antennas and Wireless Propagation Letters.

[62]  A. Willner,et al.  High-capacity millimetre-wave communications with orbital angular momentum multiplexing , 2014, Nature Communications.

[63]  J. Valentine,et al.  Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. , 2014, Nano letters.

[64]  Andrea Alù,et al.  Giant non-reciprocity at the subwavelength scale using angular momentum-biased metamaterials , 2013, Nature Communications.

[65]  A. Willner,et al.  Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers , 2013, Science.

[66]  Lianlin Li,et al.  Beating the Rayleigh limit: orbital-angular-momentum-based super-resolution diffraction tomography. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[67]  Siyuan Yu,et al.  Integrated Compact Optical Vortex Beam Emitters , 2012, Science.

[68]  M. Lipson,et al.  Subject Areas : Optics A Viewpoint on : Electrically Driven Nonreciprocity Induced by Interband Photonic Transition on a Silicon Chip , 2012 .

[69]  A. Willner,et al.  Terabit free-space data transmission employing orbital angular momentum multiplexing , 2012, Nature Photonics.

[70]  F. Tamburini,et al.  Experimental verification of photon angular momentum and vorticity with radio techniques , 2011 .

[71]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[72]  Miles J. Padgett,et al.  Tweezers with a twist , 2011 .

[73]  J. P. Woerdman,et al.  High-dimensional entanglement with orbital-angular-momentum states of light , 2011 .

[74]  John B Pendry,et al.  Time reversal in dynamically tuned zero-gap periodic systems. , 2011, Physical review letters.

[75]  L. Torner,et al.  Twisted Photons: Applications of Light with Orbital Angular Momentum , 2011 .

[76]  Michal Lipson,et al.  Inducing photonic transitions between discrete modes in a silicon optical microcavity. , 2008, Physical review letters.

[77]  Jae Hoon Lee,et al.  Experimental verification of an optical vortex coronagraph. , 2006, Physical review letters.

[78]  A. Vaziri,et al.  Experimental quantum coin tossing. , 2004, Physical review letters.

[79]  Johannes Courtial,et al.  Light’s Orbital Angular Momentum , 2004 .

[80]  A. Vaziri,et al.  Entanglement of the orbital angular momentum states of photons , 2001, Nature.

[81]  Shanhui Fan,et al.  Interband transitions in photonic crystals , 1999 .

[82]  Duncan A. Robertson,et al.  Measurement of the Rotational Frequency Shift Imparted to a Rotating Light Beam Possessing Orbital Angular Momentum , 1998 .

[83]  Miles J. Padgett,et al.  Optical tweezers and optical spanners with Laguerre-Gaussian modes , 1996 .

[84]  K. T. Gahagan,et al.  Optical vortex trapping of particles , 1996, Summaries of papers presented at the Conference on Lasers and Electro-Optics.

[85]  Marco W. Beijersbergen,et al.  Helical-wavefront laser beams produced with a spiral phaseplate , 1994 .

[86]  J. P. Woerdman,et al.  Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[87]  Charles A. Brackett,et al.  Dense Wavelength Division Multiplexing Networks: Principles and Applications , 1990, IEEE J. Sel. Areas Commun..

[88]  Sudarshan,et al.  Evolving geometric phase and its dynamical manifestation as a frequency shift: An optical experiment. , 1988, Physical review letters.

[89]  K Aoyama,et al.  Optical demultiplexer for a wavelength division multiplexing system. , 1979, Applied optics.

[90]  R. A. Beth Mechanical Detection and Measurement of the Angular Momentum of Light , 1936 .