Role of non-ideality for the ion transport in porous media: Derivation of the macroscopic equations using upscaling

[1]  Derek Y. C. Chan,et al.  The drainage of thin liquid films between solid surfaces , 1985 .

[2]  L. Blum,et al.  Mean spherical model for asymmetric electrolytes , 1975 .

[3]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[4]  Olivier Bernard,et al.  Conductance in electrolyte solutions using the mean spherical approximation , 1992 .

[5]  J. Dufrêche,et al.  Mutual diffusion coefficient of charged particles in the solvent-fixed frame of reference from Brownian dynamics simulation , 2002 .

[6]  Robert Lipton,et al.  Darcy's law for slow viscous flow past a stationary array of bubbles , 1990 .

[7]  Jason R. Looker,et al.  Homogenization of the Ionic Transport Equations in Periodic Porous Media , 2006 .

[8]  Jason R. Looker,et al.  Semilinear elliptic Neumann problems with rapid growth in the nonlinearity , 2006, Bulletin of the Australian Mathematical Society.

[9]  U. Hornung Homogenization and porous media , 1996 .

[10]  L. Blum,et al.  Mean spherical model for asymmetric electrolytes. 2. Thermodynamic properties and the pair correlation function , 1977 .

[11]  Márcio A. Murad,et al.  Electro-chemo-mechanical couplings in swelling clays derived from a micro/macro-homogenization procedure , 2002 .

[12]  J. Auriault,et al.  On the electro-osmotic flow in a saturated porous medium , 1981 .

[13]  M. Murad,et al.  Macroscopic Behavior of Swelling Porous Media Derived from Micromechanical Analysis , 2003 .

[14]  Rémi Joubaud Modélisation mathématique et numérique des fluides à l’échelle nanométrique , 2012 .

[15]  Grégoire Allaire,et al.  One-phase Newtonian flow , 1996 .

[16]  Andrey L. Piatnitski,et al.  Ion transport in porous media: derivation of the macroscopic equations using upscaling and properties of the effective coefficients , 2013, Computational Geosciences.

[17]  Peter Knabner,et al.  Rigorous homogenization of a Stokes–Nernst–Planck–Poisson system , 2012 .

[18]  M. Murad,et al.  A Two-Scale Model for Coupled Electro-Chemo-Mechanical Phenomena and Onsager’s Reciprocity Relations in Expansive Clays: II Computational Validation , 2006 .

[19]  G. Nguetseng A general convergence result for a functional related to the theory of homogenization , 1989 .

[20]  J. Davenport Editor , 1960 .

[21]  P. Adler,et al.  Electroosmosis in porous solids for high zeta potentials. , 2006, Journal of colloid and interface science.

[22]  M. Shimizu [Electrolyte solutions]. , 2019, [Kango] Japanese journal of nursing.

[23]  J. Dufrêche,et al.  Molecular hydrodynamics for electro-osmosis in clays: from Kubo to Smoluchowski , 2005 .

[24]  P. Adler,et al.  Effective medium approximation and exact formulae for electrokinetic phenomena in porous media , 2003 .

[25]  Antje Sommer,et al.  Theory Of Simple Liquids , 2016 .

[26]  P. Adler Macroscopic Electroosmotic Coupling Coefficient in Random Porous Media , 2001 .

[27]  B. Rotenberg,et al.  Electrokinetics: insights from simulation on the microscopic scale , 2013 .

[28]  George Em Karniadakis,et al.  MICROFLOWS AND NANOFLOWS , 2005 .

[29]  W. Ebeling,et al.  Conductance theory of concentrated electrolytes in an MSA-type approximation , 1981 .

[30]  Andro Mikelic,et al.  Asymptotic analysis of the Poisson–Boltzmann equation describing electrokinetics in porous media , 2012, 1212.3720.

[31]  J. Dufrêche,et al.  Transport equations for concentrated electrolyte solutions: Reference frame, mutual diffusion , 2002 .

[32]  Jacques-Louis Lions,et al.  Some Methods in the Mathematical Analysis of Systems and Their Control , 1981 .

[33]  J. Deconinck,et al.  Relaxation effect on the Onsager coefficients of mixed strong electrolytes in the mean spherical approximation. , 2007, The journal of physical chemistry. B.

[34]  R. Goldbery,et al.  SEDCODE: a FORTRAN 77 program for decoding sedimentological field data , 1984 .

[35]  Andrey L. Piatnitski,et al.  Erratum: “Homogenization of the linearized ionic transport equations in rigid periodic porous media” [J. Math. Phys.51, 123103 (2010)] , 2011 .

[36]  P. Adler,et al.  Coupled Transports in Heterogeneous Media , 2001 .

[37]  B. B. Owen,et al.  The Physical Chemistry of Electrolytic Solutions , 1963 .

[38]  G. Karniadakis,et al.  Microflows and Nanoflows: Fundamentals and Simulation , 2001 .

[39]  M. Murad,et al.  A dual-porosity model for ionic solute transport in expansive clays , 2008 .

[40]  Peter Knabner,et al.  Variable choices of scaling in the homogenization of a Nernst-Planck-Poisson problem , 2011 .

[41]  E. S. Palencia Non-Homogeneous Media and Vibration Theory , 1980 .

[42]  P. Adler,et al.  Electrokinetic phenomena in saturated compact clays. , 2006, Journal of colloid and interface science.

[43]  J. Dufrêche,et al.  Analytical theories of transport in concentrated electrolyte solutions from the MSA. , 2005, The journal of physical chemistry. B.

[44]  Márcio A. Murad,et al.  A Two-Scale Model for Coupled Electro-Chemo-Mechanical Phenomena and Onsager’s Reciprocity Relations in Expansive Clays: I Homogenization Analysis , 2006 .

[45]  D. Edwards Charge transport through a spatially periodic porous medium : electrokinetic and convective dispersion phenomena , 1995, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[46]  R. Temam,et al.  Analyse convexe et problèmes variationnels , 1974 .

[47]  G. Allaire Homogenization and two-scale convergence , 1992 .

[48]  Grégoire Allaire,et al.  Homogenization of the linearized ionic transport equations in rigid periodic porous media , 2010 .

[49]  J. Thovert,et al.  Electroosmotic Phenomena in Porous Media , 1996 .

[50]  Alexandre Ern,et al.  Mathematical study of non-ideal electrostatic correlations in equilibrium electrolytes , 2012 .

[51]  B. Rotenberg,et al.  Salt exclusion in charged porous media: a coarse-graining strategy in the case of montmorillonite clays. , 2009, Physical chemistry chemical physics : PCCP.

[52]  B. Bagchi,et al.  Ionic self-diffusion in concentrated aqueous electrolyte solutions. , 2002, Physical review letters.

[53]  Markus Schmuck,et al.  Modeling and deriving porous media Stokes-Poisson-Nernst-Planck equations by a multi-scale approach , 2011 .

[54]  P. Mazur,et al.  Non-equilibrium thermodynamics, , 1963 .

[55]  J. Dufrêche,et al.  Equilibrium and electrokinetic phenomena in charged porous media from microscopic and mesoscopic models: electro-osmosis in montmorillonite , 2003 .

[56]  Lee R. White,et al.  Electrophoretic mobility of a spherical colloidal particle , 1978 .