A matter of hand: Causal links between hand dominance, structural organization of fronto-parietal attention networks, and variability in behavioural responses to transcranial magnetic stimulation

[1]  Romain Quentin,et al.  Visual Contrast Sensitivity Improvement by Right Frontal High-Beta Activity Is Mediated by Contrast Gain Mechanisms and Influenced by Fronto-Parietal White Matter Microstructure. , 2016, Cerebral cortex.

[2]  Stamatios N. Sotiropoulos,et al.  An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging , 2016, NeuroImage.

[3]  Christopher Kennard,et al.  Structural Organization of the Corpus Callosum Predicts Attentional Shifts after Continuous Theta Burst Stimulation , 2015, The Journal of Neuroscience.

[4]  Stamatios N. Sotiropoulos,et al.  Non-parametric representation and prediction of single- and multi-shell diffusion-weighted MRI data using Gaussian processes , 2015, NeuroImage.

[5]  Joan López-Moliner,et al.  Microstructure of the superior longitudinal fasciculus predicts stimulation-induced interference with on-line motor control , 2015, NeuroImage.

[6]  Timothy Edward John Behrens,et al.  Frontoparietal Structural Connectivity Mediates the Top-Down Control of Neuronal Synchronization Associated with Selective Attention , 2015, PLoS biology.

[7]  Romain Quentin,et al.  Fronto-Parietal Anatomical Connections Influence the Modulation of Conscious Visual Perception by High-Beta Frontal Oscillatory Activity. , 2015, Cerebral cortex.

[8]  Anders Petersen,et al.  Structural Variability within Frontoparietal Networks and Individual Differences in Attentional Functions: An Approach Using the Theory of Visual Attention , 2015, The Journal of Neuroscience.

[9]  R. Ptak,et al.  Variability of behavioural responses to transcranial magnetic stimulation: Origins and predictors , 2015, Neuropsychologia.

[10]  A. Sack,et al.  The hybrid model of attentional control: New insights into hemispheric asymmetries inferred from TMS research , 2015, Neuropsychologia.

[11]  R. Ophoff,et al.  On the relationship between degree of hand-preference and degree of language lateralization , 2015, Brain and Language.

[12]  R. Kahn,et al.  Cognitive benefits of right-handedness: A meta-analysis , 2015, Neuroscience & Biobehavioral Reviews.

[13]  Carl D. Hacker,et al.  Common Behavioral Clusters and Subcortical Anatomy in Stroke , 2015, Neuron.

[14]  P. Bartolomeo,et al.  White matter lesional predictors of chronic visual neglect: a longitudinal study. , 2015, Brain : a journal of neurology.

[15]  Marc Joliot,et al.  Strong rightward lateralization of the dorsal attentional network in left‐handers with right sighting‐eye: An evolutionary advantage , 2015, Human brain mapping.

[16]  Ole Jensen,et al.  Frontal Eye Fields Control Attentional Modulation of Alpha and Gamma Oscillations in Contralateral Occipitoparietal Cortex , 2015, The Journal of Neuroscience.

[17]  Marc Joliot,et al.  Gaussian Mixture Modeling of Hemispheric Lateralization for Language in a Large Sample of Healthy Individuals Balanced for Handedness , 2014, PloS one.

[18]  George A. Alvarez,et al.  The compensatory dynamic of inter-hemispheric interactions in visuospatial attention revealed using rTMS and fMRI , 2014, Front. Hum. Neurosci..

[19]  Roel M. Willems,et al.  Differences in cerebral cortical anatomy of left- and right-handers , 2014, Front. Psychol..

[20]  Roel M. Willems,et al.  On the other hand: including left-handers in cognitive neuroscience and neurogenetics , 2014, Nature Reviews Neuroscience.

[21]  Olivier David,et al.  Changes of oscillatory brain activity induced by repetitive transcranial magnetic stimulation of the left dorsolateral prefrontal cortex in healthy subjects , 2014, NeuroImage.

[22]  Gregor Thut,et al.  On the neural origin of pseudoneglect: EEG-correlates of shifts in line bisection performance with manipulation of line length☆ , 2014, NeuroImage.

[23]  Massimo Silvetti,et al.  Damage to white matter pathways in subacute and chronic spatial neglect: a group study and 2 single-case studies with complete virtual "in vivo" tractography dissection. , 2012, Cerebral cortex.

[24]  Romain Quentin,et al.  Fronto-tectal white matter connectivity mediates facilitatory effects of non-invasive neurostimulation on visual detection , 2013, NeuroImage.

[25]  G. Thut,et al.  Spatial attention: Differential shifts in pseudoneglect direction with time-on-task and initial bias support the idea of observer subtypes , 2013, Neuropsychologia.

[26]  Steen Moeller,et al.  Advances in diffusion MRI acquisition and processing in the Human Connectome Project , 2013, NeuroImage.

[27]  Armin Schnider,et al.  Network mechanisms of responsiveness to continuous theta‐burst stimulation , 2013, The European journal of neuroscience.

[28]  M. Catani,et al.  Can spherical deconvolution provide more information than fiber orientations? Hindrance modulated orientational anisotropy, a true‐tract specific index to characterize white matter diffusion , 2013, Human brain mapping.

[29]  Mark Jenkinson,et al.  The minimal preprocessing pipelines for the Human Connectome Project , 2013, NeuroImage.

[30]  Y. Saalmann,et al.  Functional and structural architecture of the human dorsal frontoparietal attention network , 2013, Proceedings of the National Academy of Sciences.

[31]  C. Chambers,et al.  The Predictive Nature of Pseudoneglect for Visual Neglect: Evidence from Parietal Theta Burst Stimulation , 2013, PloS one.

[32]  Thomas R. Knösche,et al.  White matter integrity, fiber count, and other fallacies: The do's and don'ts of diffusion MRI , 2013, NeuroImage.

[33]  Marcel Kinsbourne,et al.  Orientational bias model of unilateral neglect: Evidence from attentional gradients within hemispace. , 2013 .

[34]  S. Kastner,et al.  Shifting Attentional Priorities: Control of Spatial Attention through Hemispheric Competition , 2013, The Journal of Neuroscience.

[35]  M. Fox,et al.  Individual Variability in Functional Connectivity Architecture of the Human Brain , 2013, Neuron.

[36]  Marc Brysbaert,et al.  Complementary hemispheric specialization for language production and visuospatial attention , 2013, Proceedings of the National Academy of Sciences.

[37]  C. Kennard,et al.  Theta burst stimulation reduces disability during the activities of daily living in spatial neglect. , 2012, Brain : a journal of neurology.

[38]  Romain Quentin,et al.  Manipulation of Pre-Target Activity on the Right Frontal Eye Field Enhances Conscious Visual Perception in Humans , 2012, PloS one.

[39]  H. Karnath,et al.  Neglect severity after left and right brain damage , 2012, Neuropsychologia.

[40]  M. Saoud,et al.  Finding centre: Ocular and fMRI investigations of bisection and landmark task performance , 2012, Brain Research.

[41]  Rainer Goebel,et al.  Measuring structural–functional correspondence: Spatial variability of specialised brain regions after macro-anatomical alignment , 2012, NeuroImage.

[42]  C. Caltagirone,et al.  Theta-burst stimulation of the left hemisphere accelerates recovery of hemispatial neglect , 2012, Neurology.

[43]  Michael C. Ridding,et al.  A comparison of two different continuous theta burst stimulation paradigms applied to the human primary motor cortex , 2011, Clinical Neurophysiology.

[44]  David M. Groppe,et al.  Mass univariate analysis of event-related brain potentials/fields I: a critical tutorial review. , 2011, Psychophysiology.

[45]  Y. Saalmann,et al.  Cognitive and Perceptual Functions of the Visual Thalamus , 2011, Neuron.

[46]  P. Schyns,et al.  Rhythmic TMS Causes Local Entrainment of Natural Oscillatory Signatures , 2011, Current Biology.

[47]  M. Corbetta,et al.  Spatial neglect and attention networks. , 2011, Annual review of neuroscience.

[48]  C. Caltagirone,et al.  Asymmetry of Parietal Interhemispheric Connections in Humans , 2011, The Journal of Neuroscience.

[49]  M. Catani,et al.  A lateralized brain network for visuospatial attention , 2011, Nature Neuroscience.

[50]  Masud Husain,et al.  Expert Cognitive Control and Individual Differences Associated with Frontal and Parietal White Matter Microstructure , 2010, The Journal of Neuroscience.

[51]  Mark E. McCourt,et al.  Biases of spatial attention in vision and audition , 2010, Brain and Cognition.

[52]  Ethan R. Buch,et al.  Cortical and subcortical interactions during action reprogramming and their related white matter pathways , 2010, Proceedings of the National Academy of Sciences.

[53]  E. Macaluso,et al.  Neural correlates of the spatial and expectancy components of endogenous and stimulus-driven orienting of attention in the Posner task. , 2010, Cerebral cortex.

[54]  Isabelle S. Häberling,et al.  Cerebral Asymmetries: Complementary and Independent Processes , 2010, PloS one.

[55]  M. Corbetta,et al.  Right Hemisphere Dominance during Spatial Selective Attention and Target Detection Occurs Outside the Dorsal Frontoparietal Network , 2010, The Journal of Neuroscience.

[56]  Giuseppe Scotti,et al.  A modified damped Richardson–Lucy algorithm to reduce isotropic background effects in spherical deconvolution , 2010, NeuroImage.

[57]  M. Corbetta,et al.  Resting interhemispheric functional magnetic resonance imaging connectivity predicts performance after stroke , 2009, Annals of neurology.

[58]  R. Müri,et al.  Treatment of hemispatial neglect by means of rTMS--a review. , 2010, Restorative neurology and neuroscience.

[59]  S. Rossi,et al.  Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research , 2009, Clinical Neurophysiology.

[60]  S. Kastner,et al.  Topographic maps in human frontal and parietal cortex , 2009, Trends in Cognitive Sciences.

[61]  S. Kastner,et al.  Transcranial magnetic stimulation studies of visuospatial attentional control , 2009, F1000 biology reports.

[62]  Dorothy V M Bishop,et al.  Reliability of a novel paradigm for determining hemispheric lateralization of visuospatial function , 2009, Journal of the International Neuropsychological Society.

[63]  Dario Cazzoli,et al.  One Session of Repeated Parietal Theta Burst Stimulation Trains Induces Long-Lasting Improvement of Visual Neglect , 2009, Stroke.

[64]  D. Bishop,et al.  Hemispheric division of function is the result of independent probabilistic biases , 2009, Neuropsychologia.

[65]  Nikolaus Weiskopf,et al.  Hemispheric Differences in Frontal and Parietal Influences on Human Occipital Cortex: Direct Confirmation with Concurrent TMS–fMRI , 2009, Journal of Cognitive Neuroscience.

[66]  P. Wurtz,et al.  Interhemispheric balance of overt attention: a theta burst stimulation study , 2009, European Journal of Neuroscience.

[67]  Rainer Goebel,et al.  Optimizing Functional Accuracy of TMS in Cognitive Studies: A Comparison of Methods , 2009, Journal of Cognitive Neuroscience.

[68]  R. Knight,et al.  Brain Activity During Landmark and Line Bisection Tasks , 2008, Front. Hum. Neurosci..

[69]  P. Bartolomeo,et al.  White matter (dis)connections and gray matter (dys)functions in visual neglect: Gaining insights into the brain networks of spatial awareness , 2008, Cortex.

[70]  P. Wurtz,et al.  Neglect‐like visual exploration behaviour after theta burst transcranial magnetic stimulation of the right posterior parietal cortex , 2008, The European journal of neuroscience.

[71]  R. Deichmann,et al.  Distinct causal influences of parietal versus frontal areas on human visual cortex: evidence from concurrent TMS-fMRI. , 2008, Cerebral cortex.

[72]  R. Goebel,et al.  Imaging the brain activity changes underlying impaired visuospatial judgments: simultaneous FMRI, TMS, and behavioral studies. , 2007, Cerebral cortex.

[73]  P. Bartolomeo,et al.  Left unilateral neglect as a disconnection syndrome. , 2007, Cerebral cortex.

[74]  Heidi Johansen-Berg,et al.  Individual Differences in White-Matter Microstructure Reflect Variation in Functional Connectivity during Choice , 2007, Current Biology.

[75]  John C. Rothwell,et al.  Theta Burst Stimulation , 2007 .

[76]  D. Pandya,et al.  Association fibre pathways of the brain: parallel observations from diffusion spectrum imaging and autoradiography. , 2007, Brain : a journal of neurology.

[77]  Karl J. Friston,et al.  Analysis of intersubject variability in activation: An application to the incidental episodic retrieval during recognition test , 2007, Human brain mapping.

[78]  Á. Pascual-Leone,et al.  Opposite impact on 14C-2-deoxyglucose brain metabolism following patterns of high and low frequency repetitive transcranial magnetic stimulation in the posterior parietal cortex , 2007, Experimental Brain Research.

[79]  D. Pandya,et al.  Fiber Pathways of the Brain , 2006 .

[80]  Jon Driver,et al.  Visual Selection and Posterior Parietal Cortex: Effects of Repetitive Transcranial Magnetic Stimulation on Partial Report Analyzed by Bundesen's Theory of Visual Attention , 2005, The Journal of Neuroscience.

[81]  A. Jansen,et al.  Atypical Hemispheric Dominance for Attention: Functional MRI Topography , 2005, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[82]  H. Lohmann,et al.  Hemispheric lateralization of spatial attention in right- and left-hemispheric language dominance , 2005, Behavioural Brain Research.

[83]  J. Rothwell,et al.  Theta Burst Stimulation of the Human Motor Cortex , 2005, Neuron.

[84]  M. Corbetta,et al.  Neural basis and recovery of spatial attention deficits in spatial neglect , 2005, Nature Neuroscience.

[85]  Alvaro Pascual-Leone,et al.  Impact of repetitive transcranial magnetic stimulation of the parietal cortex on metabolic brain activity: a 14C-2DG tracing study in the cat , 2005, Experimental Brain Research.

[86]  Mark W. Woolrich,et al.  Advances in functional and structural MR image analysis and implementation as FSL , 2004, NeuroImage.

[87]  S. Shipp The brain circuitry of attention , 2004, Trends in Cognitive Sciences.

[88]  S Shipp,et al.  The functional logic of cortico-pulvinar connections. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[89]  Stefan Skare,et al.  How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging , 2003, NeuroImage.

[90]  Daniel C. Javitt,et al.  Right hemisphere control of visuospatial attention: line-bisection judgments evaluated with high-density electrical mapping and source analysis☆ , 2003, NeuroImage.

[91]  R. Kahn,et al.  Language lateralization in monozygotic twin pairs concordant and discordant for handedness. , 2002, Brain : a journal of neurology.

[92]  E. T. Possing,et al.  Language lateralization in left-handed and ambidextrous people: fMRI data , 2002, Neurology.

[93]  D. Pandya,et al.  Comparative cytoarchitectonic analysis of the human and the macaque ventrolateral prefrontal cortex and corticocortical connection patterns in the monkey , 2002, The European journal of neuroscience.

[94]  M. Corbetta,et al.  Control of goal-directed and stimulus-driven attention in the brain , 2002, Nature Reviews Neuroscience.

[95]  J. Rademacher,et al.  Variability and asymmetry in the human precentral motor system. A cytoarchitectonic and myeloarchitectonic brain mapping study. , 2001, Brain : a journal of neurology.

[96]  Á. Pascual-Leone,et al.  Enhanced visual spatial attention ipsilateral to rTMS-induced 'virtual lesions' of human parietal cortex , 2001, Nature Neuroscience.

[97]  K. Zilles,et al.  The Neural Basis of Vertical and Horizontal Line Bisection Judgments: An fMRI Study of Normal Volunteers , 2001, NeuroImage.

[98]  Georg Kerkhoff,et al.  Spatial hemineglect in humans , 2001, Progress in Neurobiology.

[99]  Filippo Brighina,et al.  Contralateral neglect induced by right posterior parietal rTMS in healthy subjects , 2000, Neuroreport.

[100]  K. Zilles,et al.  Line bisection judgments implicate right parietal cortex and cerebellum as assessed by fMRI , 2000, Neurology.

[101]  M. McCourt,et al.  Pseudoneglect: a review and meta-analysis of performance factors in line bisection tasks , 2000, Neuropsychologia.

[102]  J. G. Braun,et al.  Line bisection performance of normal adults , 1999, Neurology.

[103]  Mark E. McCourt,et al.  Visuospatial attention in line bisection: stimulusmodulation of pseudoneglect , 1999, Neuropsychologia.

[104]  X. Bosch,et al.  Imaging the brain. , 1998, The New England journal of medicine.

[105]  R. Cowie,et al.  Variation among Nonclinical Subjects on a Line-Bisection Task , 1998, Perceptual and motor skills.

[106]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[107]  J. Michael Fitzpatrick,et al.  A technique for accurate magnetic resonance imaging in the presence of field inhomogeneities , 1992, IEEE Trans. Medical Imaging.

[108]  J. Marshall,et al.  Individual variation in line bisection: A study of normal subjects with application to the interpretation of visual neglect , 1990, Neuropsychologia.

[109]  M M Mesulam,et al.  Large‐scale neurocognitive networks and distributed processing for attention, language, and memory , 1990, Annals of neurology.

[110]  M. Kinsbourne Mechanisms of Unilateral Neglect , 1987 .

[111]  M. Jeannerod Neurophysiological and neuropsychological aspects of spatial neglect. , 1987 .

[112]  M. P. Bryden,et al.  Patterns of cerebral organization , 1983, Brain and Language.

[113]  M. Mesulam A cortical network for directed attention and unilateral neglect , 1981, Annals of neurology.

[114]  K. Heilman,et al.  Mechanisms underlying hemispatial neglect , 1979, Annals of neurology.

[115]  R. C. Oldfield The assessment and analysis of handedness: the Edinburgh inventory. , 1971, Neuropsychologia.

[116]  S. Shapiro,et al.  An Analysis of Variance Test for Normality (Complete Samples) , 1965 .