The spectral method and numerical continuation algorithm for the von Kármán problem with postbuckling behaviour of solutions
暂无分享,去创建一个
[1] P. G. Ciarlet,et al. Les équations de Von Kármán , 1980 .
[2] C.-S. Chien,et al. Lanczos‐type Methods for Continuation Problems , 1997 .
[3] E. Allgower,et al. Continuation and local perturbation for multiple bifurcations , 1986 .
[4] J. Rappaz,et al. Numerical analysis for nonlinear and bifurcation problems , 1997 .
[5] Michael R. Osborne,et al. Computing eigenvalues of ordinary differential equations , 2003 .
[6] Kokou B. Dossou,et al. A Newton-GMRES Approach for the Analysis of the Postbuckling Behavior of the Solutions of the von Kármán Equations , 2003, SIAM J. Sci. Comput..
[7] Martin Golubitsky,et al. Boundary conditions and mode jumping in the buckling of a rectangular plate , 1979 .
[8] Numerical techniques for linear and nonlinear eigenvalue problems in the theory of elasticity , 2005 .
[9] C.-S. Chien,et al. Tracing the buckling of a rectangular plate with the block GMRES method , 2001 .
[10] C.-S. Chien,et al. Mode Jumping In The Von Kármán Equations , 2000, SIAM J. Sci. Comput..
[11] E. Allgower,et al. Numerical Continuation Methods , 1990 .