The prediction of Raman spectra of platinum(II) anticancer drugs by density functional theory

We present the method of theoretical calculations of the Raman intensities and the simulated Raman spectra of platinum(II) complexes. Theoretical Raman spectra of the anticancer agents: cisplatin (1), carboplatin (2), cis-[Pt(orotato)(NH3)2 ]( 3), cis[PtCl2(NH3)(2-picoline)], ZD0473 (4), and the two transient species of 4 (the hydrolysis products) were calculated by density functional mPW1PW method with several basis sets. For comparison, the experimental Raman spectra of compounds 1–3 were measured. The clear-cut assignment of the Pt–ligand vibrations in the Raman spectra of the investigated compounds has been made on the basis of the calculated potential energy distribution. 2004 Elsevier B.V. All rights reserved.

[1]  T. Ziegler,et al.  Application of density functional theory to infrared absorption intensity calculations on transition-metal carbonyls , 1992 .

[2]  F. Rosenfeldt Editorial: Metabolic Supplementation with Orotic Acid and Magnesium Orotate , 1998, Cardiovascular Drugs and Therapy.

[3]  D. Michalska,et al.  “Troublesome” Vibrations of Aromatic Molecules in Second-Order Möller−Plesset and Density Functional Theory Calculations: Infrared Spectra of Phenol and Phenol-OD Revisited , 2001 .

[4]  A. G. Ozkabak,et al.  A benchmark vibrational potential surface : ground-state benzene , 1991 .

[5]  D. Michalska,et al.  Molecular Structure and Bonding in Platinum-Picoline Anticancer Complex: Density Functional Study , 2004 .

[6]  P. Sadler,et al.  Stereospecific and Kinetic Control over the Hydrolysis of a Sterically Hindered Platinum Picoline Anticancer Complex , 1998 .

[7]  C. O'Neill,et al.  Retention of activity by the new generation platinum agent AMD0473 in four human tumour cell lines possessing acquired resistance to oxaliplatin. , 2002, European Journal of Cancer.

[8]  D. Michalska,et al.  INFRARED MATRIX ISOLATION AND THEORETICAL STUDIES ON GLUTARIMIDE , 1997 .

[9]  Walter Thiel,et al.  Theoretical study of the vibrational spectra of the transition metal carbonyls M(CO)6 [M=Cr, Mo, W], M(CO)5 [M=Fe, Ru, Os], and M(CO)4 [M=Ni, Pd, Pt] , 1995 .

[10]  Patrick J. Hendra,et al.  Fourier transform Raman spectroscopy : instrumentation and chemical applications , 1991 .

[11]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations , 1984 .

[12]  L. Pejov,et al.  A density functional theory analysis of Raman and IR spectra of 2-adamantanone , 2002 .

[13]  J. Reedijk Improved understanding in platinium antitumour chemistry , 1996 .

[14]  Vincenzo Barone,et al.  Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The mPW and mPW1PW models , 1998 .

[15]  Horace Traubel Collect , 1904 .

[16]  R. Aroca,et al.  Surface-enhanced raman scattering of p-nitrothiophenol molecular vibrations of its silver salt and the surface complex formed on silver islands and colloids. , 2001, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[17]  Geometry and frequencies of the halothane molecule , 1999 .

[18]  D. Lebwohl,et al.  Clinical development of platinum complexes in cancer therapy: an historical perspective and an update. , 1998, European journal of cancer.

[19]  A. Penzkofer,et al.  CHEMICAL PHYSICS LETTERS , 1976 .

[20]  K. Fuwa,et al.  The crystal structure of cis-diammine(orotinato)platinum(II). , 1981 .

[21]  Пётр Петрович Лазарев Handbuch der Radiologie , 1915 .

[22]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[23]  K. Nakamoto Infrared and Raman Spectra of Inorganic and Coordination Compounds , 1978 .

[24]  H. L. B.,et al.  Handbuch der Radiologie , 1934, Nature.

[25]  Jean-Raymond Abrial,et al.  On B , 1998, B.

[26]  Pavel Hobza,et al.  Electronic structures, vibrational spectra, and revised assignment of aniline and its radical cation: Theoretical study , 2003 .

[27]  Wang,et al.  Generalized gradient approximation for the exchange-correlation hole of a many-electron system. , 1996, Physical review. B, Condensed matter.

[28]  D. McNaughton,et al.  Density functional theory and surface enhanced Raman spectroscopy characterization of novel platinum drugs. , 2002, Biopolymers.

[29]  Rafa Wysokiski,et al.  The performance of different density functional methods in the calculation of molecular structures and vibrational spectra of platinum(II) antitumor drugs: cisplatin and carboplatin , 2001, J. Comput. Chem..

[30]  Michael J. Frisch,et al.  Self‐consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets , 1984 .

[31]  J. Trosko,et al.  Platinum Compounds: a New Class of Potent Antitumour Agents , 1969, Nature.

[32]  A. G. Ozkabak,et al.  Ab initio simulation of benzene Raman intensities , 1991 .

[33]  T. Theophanides,et al.  Binding of cis- and trans-dichlorodiammineplatinum(II) to nucleic acids studied by Raman spectroscopy. Part. I. Salmon sperm DNA , 1981 .

[34]  Prasad L. Polavarapu,et al.  Ab initio vibrational Raman and Raman optical activity spectra , 1990 .

[35]  Æleen Frisch,et al.  Exploring chemistry with electronic structure methods , 1996 .

[36]  Ranbir Singh,et al.  J. Mol. Struct. (Theochem) , 1996 .