DAMPING IDENTIFICATION IN MULTI-DEGREE-OF-FREEDOM SYSTEMS VIA A WAVELET-LOGARITHMIC DECREMENT—PART 1: THEORY
暂无分享,去创建一个
[1] W. Thomson. Theory of vibration with applications , 1965 .
[2] Synthèse modale : théorie et extensions , 1985 .
[3] I. Daubechies. Orthonormal bases of compactly supported wavelets , 1988 .
[4] P. G. Lemari'e,et al. Ondelettes `a localisation exponentielle , 1988 .
[5] Stéphane Mallat,et al. A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..
[6] Valérie Perrier. Ondelettes et simulation numerique , 1991 .
[7] C. Chui. Wavelets: A Tutorial in Theory and Applications , 1992 .
[8] Ingrid Daubechies,et al. Ten Lectures on Wavelets , 1992 .
[9] Michael Unser,et al. A family of polynomial spline wavelet transforms , 1993, Signal Process..
[10] C. Lamarque,et al. Analysis of nonlinear oscillations by wavelet transform: Lyapunov exponents , 1996 .
[11] Massimo Ruzzene,et al. NATURAL FREQUENCIES AND DAMPINGS IDENTIFICATION USING WAVELET TRANSFORM: APPLICATION TO REAL DATA , 1997 .
[12] W. Staszewski. IDENTIFICATION OF DAMPING IN MDOF SYSTEMS USING TIME-SCALE DECOMPOSITION , 1997 .
[13] Daniel Coca,et al. Continuous-Time System Identification for Linear and Nonlinear Systems Using Wavelet Decompositions , 1997 .
[14] Thomas Gmur. Dynamique des structures - Analyse modale numérique , 1997 .
[15] W. Staszewski. WAVELET BASED COMPRESSION AND FEATURE SELECTION FOR VIBRATION ANALYSIS , 1998 .