On Characterizing the Data Access Complexity of Programs
暂无分享,去创建一个
J. Ramanujam | P. Sadayappan | Fabrice Rastello | Louis-Noël Pouchet | Venmugil Elango | J. Ramanujam | P. Sadayappan | F. Rastello | V. Elango | L. Pouchet
[1] Pinar Heggernes,et al. Graph-Theoretic Concepts in Computer Science , 2016, Lecture Notes in Computer Science.
[2] Stefán Ingi Valdimarsson. The Brascamp–Lieb Polyhedron , 2010, Canadian Journal of Mathematics.
[3] James Demmel,et al. Minimizing Communication in Numerical Linear Algebra , 2009, SIAM J. Matrix Anal. Appl..
[4] P. Feautrier. Parametric integer programming , 1988 .
[5] Mohammad Zubair,et al. Cache-optimal algorithms for option pricing , 2010, TOMS.
[6] James Demmel,et al. Communication lower bounds and optimal algorithms for programs that reference arrays - Part 1 , 2013, ArXiv.
[7] P. Cochat,et al. Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.
[8] ToledoSivan,et al. Communication lower bounds for distributed-memory matrix multiplication , 2004 .
[9] Leslie G. Valiant,et al. A bridging model for multi-core computing , 2008, J. Comput. Syst. Sci..
[10] Franco P. Preparata,et al. Processor—Time Tradeoffs under Bounded-Speed Message Propagation: Part II, Lower Bounds , 1999, Theory of Computing Systems.
[11] James Demmel,et al. Minimizing Communication in All-Pairs Shortest Paths , 2013, 2013 IEEE 27th International Symposium on Parallel and Distributed Processing.
[12] T. Tao,et al. Finite bounds for Hölder-Brascamp-Lieb multilinear inequalities , 2005, math/0505691.
[13] J. Ramanujam,et al. On characterizing the data movement complexity of computational DAGs for parallel execution , 2014, SPAA.
[14] Desh Ranjan,et al. Upper and lower I/O bounds for pebbling r-pyramids , 2010, J. Discrete Algorithms.
[15] James Demmel,et al. Communication-optimal Parallel and Sequential QR and LU Factorizations , 2008, SIAM J. Sci. Comput..
[16] H. T. Kung,et al. I/O complexity: The red-blue pebble game , 1981, STOC '81.
[17] Gianfranco Bilardi,et al. A Lower Bound Technique for Communication on BSP with Application to the FFT , 2012, Euro-Par.
[18] DemmelJames,et al. Graph expansion and communication costs of fast matrix multiplication , 2013 .
[19] Sanjay V. Rajopadhye,et al. The Z-polyhedral model , 2007, PPOPP.
[20] Esslli Site,et al. Models of Computation , 2012 .
[21] A. I. Barvinok,et al. Computing the Ehrhart polynomial of a convex lattice polytope , 1994, Discret. Comput. Geom..
[22] F. P. Preparata,et al. Processor—Time Tradeoffs under Bounded-Speed Message Propagation: Part I, Upper Bounds , 1995, Theory of Computing Systems.
[23] Mohammad Zubair,et al. A unified model for multicore architectures , 2008, IFMT '08.
[24] H. Whitney,et al. An inequality related to the isoperimetric inequality , 1949 .
[25] Jack Dongarra,et al. High Performance Computing for Computational Science , 2003 .
[26] James Demmel,et al. Brief announcement: strong scaling of matrix multiplication algorithms and memory-independent communication lower bounds , 2012, SPAA '12.
[27] David Parello,et al. Semi-Automatic Composition of Loop Transformations for Deep Parallelism and Memory Hierarchies , 2006, International Journal of Parallel Programming.
[28] John Shalf,et al. Exascale Computing Technology Challenges , 2010, VECPAR.
[29] Michele Scquizzato,et al. Communication Lower Bounds for Distributed-Memory Computations , 2013, STACS.
[30] Samuel H. Fuller,et al. The Future of Computing Performance: Game Over or Next Level? , 2014 .
[31] Sven Verdoolaege,et al. isl: An Integer Set Library for the Polyhedral Model , 2010, ICMS.
[32] Philippe Clauss,et al. Profiling Data-Dependence to Assist Parallelization: Framework, Scope, and Optimization , 2012, 2012 45th Annual IEEE/ACM International Symposium on Microarchitecture.
[33] Stephen A. Cook,et al. An observation on time-storage trade off , 1973, J. Comput. Syst. Sci..
[34] Andrea Pietracaprina,et al. On the Space and Access Complexity of Computation DAGs , 2000, WG.
[35] Desh Ranjan,et al. Strong I/O Lower Bounds for Binomial and FFT Computation Graphs , 2011, COCOON.
[36] Roberto Bruni,et al. Models of Computation , 2017, Texts in Theoretical Computer Science. An EATCS Series.
[37] Desh Ranjan,et al. Vertex isoperimetric parameter of a Computation Graph , 2012, Int. J. Found. Comput. Sci..
[38] Telecommunications Board. The Future of Computing Performance: Game Over or Next Level? , 2011 .
[39] Gianfranco Bilardi,et al. A Characterization of Temporal Locality and Its Portability across Memory Hierarchies , 2001, ICALP.
[40] Samuel H. Fuller,et al. Computing Performance: Game Over or Next Level? , 2011, Computer.
[41] John E. Savage. Extending the Hong-Kung Model to Memory Hierarchies , 1995, COCOON.