Controlling drug nanoparticle formation by rapid precipitation.

Nanoparticles are a drug delivery platform that can enhance the efficacy of active pharmaceutical ingredients, including poorly-water soluble compounds, ionic drugs, proteins, peptides, siRNA and DNA therapeutics. To realize the potential of these nano-sized carriers, manufacturing processes must be capable of providing reproducible, scalable and stable formulations. Antisolvent precipitation to form drug nanoparticles has been demonstrated as one such robust and scalable process. This review discusses the nucleation and growth of organic nanoparticles at high supersaturation. We present process considerations for controlling supersaturations as well as physical and chemical routes for modifying API solubility to optimize supersaturation and control particle size. We conclude with a discussion of post-precipitation factors which influence nanoparticle stability and efficacy in vivo and techniques for stabilization.

[1]  Robert Langer,et al.  Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery. , 2007, Biomaterials.

[2]  F. Szoka,et al.  Comparative properties and methods of preparation of lipid vesicles (liposomes). , 1980, Annual review of biophysics and bioengineering.

[3]  Robert K. Prud'homme,et al.  Flash NanoPrecipitation of Organic Actives and Block Copolymers using a Confined Impinging Jets Mixer , 2003 .

[4]  J. Xiong,et al.  Solid state NMR perspective of drug-polymer solid solutions: a model system based on poly(ethylene oxide). , 2004, International journal of pharmaceutics.

[5]  F. Szoka,et al.  Simple mixing device to reproducibly prepare cationic lipid-DNA complexes (lipoplexes). , 1999, BioTechniques.

[6]  J. Lieberman,et al.  The silent treatment: siRNAs as small molecule drugs , 2006, Gene Therapy.

[7]  J H Senior,et al.  Fate and behavior of liposomes in vivo: a review of controlling factors. , 1987, Critical reviews in therapeutic drug carrier systems.

[8]  Andrew D. Miller,et al.  MAGfect: a novel liposome formulation for MRI labelling and visualization of cells. , 2006, Organic & biomolecular chemistry.

[9]  Gelation of "catanionic" vesicles by hydrophobically modified polyelectrolytes , 2002 .

[10]  Y. Wang,et al.  Fabrication of drug nanoparticles by evaporative precipitation of nanosuspension. , 2010, International journal of pharmaceutics.

[11]  Baram,et al.  Crystallization kinetics. , 1994, Physical review. B, Condensed matter.

[12]  Patrick D. Beattie,et al.  Novel method for concentrating and drying polymeric nanoparticles: hydrogen bonding coacervate precipitation. , 2010, Molecular pharmaceutics.

[13]  K. Johnston,et al.  Flocculated Amorphous Nanoparticles for Highly Supersaturated Solutions , 2008, Pharmaceutical Research.

[14]  W. Finlay,et al.  Spray-freeze-dried liposomal ciprofloxacin powder for inhaled aerosol drug delivery. , 2005, International journal of pharmaceutics.

[15]  J. Keith Guillory,et al.  Handbook of Pharmaceutical Salts: Properties, Selection, and Use Edited by P. Heinrich Stahl and Camile G. Wermuth. VHCA, Verlag Helvetica Chimica Acta, Zürich, Switzerland, and Wiley-VCH, Weinheim, Germany. 2002. vix + 374 pp. 17.5 × 24.5 cm. ISBN 3-906390-26-8. $130.00 , 2003 .

[16]  S. Stainmesse,et al.  Freeze-drying of nanoparticles: formulation, process and storage considerations. , 2006, Advanced drug delivery reviews.

[17]  Nikolai G. Khlebtsov,et al.  Optical properties and biomedical applications of plasmonic nanoparticles , 2010 .

[18]  M. Mazzotti,et al.  Model-Based Optimization of Particle Size Distribution in Batch-Cooling Crystallization of Paracetamol , 2004 .

[19]  So Jin Lee,et al.  Stability and cellular uptake of polymerized siRNA (poly-siRNA)/polyethylenimine (PEI) complexes for efficient gene silencing. , 2010, Journal of controlled release : official journal of the Controlled Release Society.

[20]  L. Lattuada,et al.  Synthesis of Gd-DTPA-cholesterol: a new lipophilic gadolinium complex as a potential MRI contrast agent , 2003 .

[21]  R. Austin,et al.  Synthesis of Stable Block-Copolymer-Protected NaYF4:Yb3+, Er3+ Up-Converting Phosphor Nanoparticles , 2010 .

[22]  Anders Hult,et al.  New methodologies in the construction of dendritic materials. , 2009, Chemical Society reviews.

[23]  K. G. Rajeev,et al.  Rational design of cationic lipids for siRNA delivery , 2010, Nature Biotechnology.

[24]  M. Trotta,et al.  Sterilization and freeze-drying of drug-free and drug-loaded solid lipid nanoparticles , 1997 .

[25]  Theodore W Randolph,et al.  Surface adsorption of recombinant human interferon-gamma in lyophilized and spray-lyophilized formulations. , 2002, Journal of pharmaceutical sciences.

[26]  R. Prud’homme,et al.  Modulating the therapeutic activity of nanoparticle delivered paclitaxel by manipulating the hydrophobicity of prodrug conjugates. , 2008, Journal of medicinal chemistry.

[27]  Yun Sun,et al.  Dual-modality in vivo imaging using rare-earth nanocrystals with near-infrared to near-infrared (NIR-to-NIR) upconversion luminescence and magnetic resonance properties. , 2010, Biomaterials.

[28]  John R. Bourne,et al.  Micromixing in static mixers: an experimental study , 1992 .

[29]  H. Maeda,et al.  Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. , 2000, Journal of controlled release : official journal of the Controlled Release Society.

[30]  R. Langer,et al.  Drug delivery and targeting. , 1998, Nature.

[31]  M. Hashida,et al.  The Fate of Plasmid DNA After Intravenous Injection in Mice: Involvement of Scavenger Receptors in Its Hepatic Uptake , 1995, Pharmaceutical Research.

[32]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[33]  G. Amidon,et al.  Enabling the intestinal absorption of highly polar antiviral agents: ion-pair facilitated membrane permeation of zanamivir heptyl ester and guanidino oseltamivir. , 2010, Molecular pharmaceutics.

[34]  K. Johnston,et al.  Comparison of bioavailability of amorphous versus crystalline itraconazole nanoparticles via pulmonary administration in rats. , 2010, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[35]  Jianfeng Chen,et al.  Controlled Liquid Antisolvent Precipitation of Hydrophobic Pharmaceutical Nanoparticles in a Microchannel Reactor , 2007 .

[36]  P. Cullis,et al.  Drug Delivery Systems: Entering the Mainstream , 2004, Science.

[37]  M. Manning,et al.  Hydrophobic Ion Pairing: Altering the Solubility Properties of Biomolecules , 1998, Pharmaceutical Research.

[38]  H. Fessi,et al.  Freeze‐drying of itraconazole‐loaded nanosphere suspensions: a feasibility study , 1996 .

[39]  D. Flanagan,et al.  General solution for diffusion-controlled dissolution of spherical particles. 1. Theory. , 1999, Journal of pharmaceutical sciences.

[40]  Tycho Heimbach,et al.  Prodrugs: design and clinical applications , 2008, Nature Reviews Drug Discovery.

[41]  A. W. Etchells,et al.  Jet Reactor Scale-Up for Mixing-Controlled Reactions , 1995 .

[42]  J. Sambles,et al.  The Kelvin equation—a review , 1972 .

[43]  Y. Jeong,et al.  Effect of cryoprotectants on the reconstitution of surfactant-free nanoparticles of poly(DL-lactide-co-glycolide) , 2005, Journal of microencapsulation.

[44]  Steven J. Shire,et al.  Protein Inhalation Powders: Spray Drying vs Spray Freeze Drying , 1999, Pharmaceutical Research.

[45]  I. Kevrekidis,et al.  Protected peptide nanoparticles: experiments and brownian dynamics simulations of the energetics of assembly. , 2009, Nano letters.

[46]  Lei Wang,et al.  Formulation and stability of itraconazole and odanacatib nanoparticles: governing physical parameters. , 2009, Molecular pharmaceutics.

[47]  J. Chew,et al.  Comparison between Open-Loop Temperature Control and Closed-Loop Supersaturation Control for Cooling Crystallization of Glycine , 2007 .

[48]  D. Scheinberg,et al.  Tumor Therapy with Targeted Atomic Nanogenerators , 2001, Science.

[49]  Ying Liu,et al.  CFD predictions for chemical processing in a confined impinging‐jets reactor , 2006 .

[50]  J. Fernandes,et al.  Synthetic and natural polycations for gene therapy: state of the art and new perspectives. , 2006, Current gene therapy.

[51]  E. Allémann,et al.  Development of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticles. , 2005, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[52]  K. Johnston,et al.  Spray freezing into liquid versus spray-freeze drying: influence of atomization on protein aggregation and biological activity. , 2006, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[53]  R. Gref,et al.  Freeze-Drying of Composite Core-Shell Nanoparticles , 2006, Drug development and industrial pharmacy.

[54]  C. Macosko,et al.  Polyelectrolyte stabilized drug nanoparticles via flash nanoprecipitation: a model study with beta-carotene. , 2010, Journal of pharmaceutical sciences.

[55]  Joseph M. DeSimone,et al.  Strategies in the design of nanoparticles for therapeutic applications , 2010, Nature Reviews Drug Discovery.

[56]  Athanassios Z Panagiotopoulos,et al.  Composite block copolymer stabilized nanoparticles: simultaneous encapsulation of organic actives and inorganic nanostructures. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[57]  P. Cullis,et al.  Association of blood proteins with large unilamellar liposomes in vivo. Relation to circulation lifetimes. , 1992, The Journal of biological chemistry.

[58]  R. Prud’homme,et al.  Ostwald ripening of beta-carotene nanoparticles. , 2007, Physical review letters.

[59]  H. Maeda,et al.  A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. , 1986, Cancer research.

[60]  J. Bourne,et al.  Rapid micromixing by the impingement of thin liquid sheets. 2. Mixing study , 1989 .

[61]  Ying Liu,et al.  Mixing in a multi-inlet vortex mixer (MIVM) for flash nano-precipitation , 2008 .

[62]  K. Johnston,et al.  Drug nanoparticles by antisolvent precipitation: mixing energy versus surfactant stabilization. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[63]  K. Taylor,et al.  The processing of nanoparticles containing protein for suspension in hydrofluoroalkane propellants. , 2009, International journal of pharmaceutics.

[64]  R. Müller,et al.  Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art. , 2000, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[65]  Robert K. Prud'homme,et al.  Chemical Processing and Micromixing in Confined Impinging Jets , 2003 .

[66]  J. H. van Zanten,et al.  Monitoring DNA/poly-L-lysine polyplex formation with time-resolved multiangle laser light scattering. , 2001, Biophysical journal.

[67]  D. Needham,et al.  The “Stealth” Liposome: A Prototypical Biomaterial , 1996 .

[68]  L. Brannon-Peppas,et al.  Nanoparticle and targeted systems for cancer therapy. , 2004, Advanced drug delivery reviews.

[69]  P. Burke,et al.  Atomizing into a chilled extraction solvent eliminates liquid gas from a spray-freeze drying microencapsulation process. , 2008, Journal of pharmaceutical sciences.

[70]  Sai T Reddy,et al.  Exploiting lymphatic transport and complement activation in nanoparticle vaccines , 2007, Nature Biotechnology.

[71]  H. Chakrapani,et al.  Stabilization of the nitric oxide (NO) prodrugs and anticancer leads, PABA/NO and Double JS-K, through incorporation into PEG-protected nanoparticles. , 2010, Molecular pharmaceutics.

[72]  Christine Vauthier,et al.  Methods for the Preparation and Manufacture of Polymeric Nanoparticles , 2009, Pharmaceutical Research.

[73]  Jiyoung M Dang,et al.  Natural polymers for gene delivery and tissue engineering. , 2006, Advanced drug delivery reviews.

[74]  O. Bourdon,et al.  Relationship between complement activation, cellular uptake and surface physicochemical aspects of novel PEG-modified nanocapsules. , 2001, Biomaterials.

[75]  Blair K. Brettmann,et al.  Design of potent amorphous drug nanoparticles for rapid generation of highly supersaturated media. , 2007, Molecular pharmaceutics.

[76]  L. F. Knapp The solubility of small particles and the stability of colloids , 1922 .

[77]  Jiangning Chen,et al.  Preparation and drug release behaviors of nimodipine-loaded poly(caprolactone)-poly(ethylene oxide)-polylactide amphiphilic copolymer nanoparticles. , 2003, Biomaterials.

[78]  M. Akashi,et al.  Multifunctional conjugation of proteins on/into bio-nanoparticles prepared by amphiphilic poly(γ-glutamic acid) , 2006, Journal of biomaterials science. Polymer edition.

[79]  A. Mahajan,et al.  Nucleation and growth kinetics of biochemicals measured at high supersaturations , 1994 .

[80]  K. Johnston,et al.  Flocculation of polymer stabilized nanocrystal suspensions to produce redispersible powders. , 2009, Drug development and industrial pharmacy.

[81]  Shiladitya Sengupta,et al.  Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system , 2005, Nature.

[82]  Matthias John,et al.  Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs , 2004, Nature.

[83]  G. Liversidge,et al.  Particle size reduction for improvement of oral bioavailability of hydrophobic drugs: I. Absolute oral bioavailability of nanocrystalline danazol in beagle dogs , 1995 .

[84]  R. Prud’homme,et al.  Ostwald Ripening ofβ-Carotene Nanoparticles , 2007 .

[85]  Elaine Merisko-Liversidge,et al.  Nanosizing: a formulation approach for poorly-water-soluble compounds. , 2003, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[86]  Bruno C. Hancock,et al.  What is the True Solubility Advantage for Amorphous Pharmaceuticals? , 2000, Pharmaceutical Research.

[87]  John R. Bourne,et al.  Fast reactions in rotor-stator mixers of different size , 1992 .

[88]  G. Feher,et al.  Crystal growth studies of lysozyme as a model for protein crystallization , 1986 .

[89]  J. Koenig,et al.  The use of FT-IR imaging as an analytical tool for the characterization of drug delivery systems. , 2003, Journal of controlled release : official journal of the Controlled Release Society.

[90]  M. Sznitowska,et al.  The expulsion of lipophilic drugs from the cores of solid lipid microspheres in diluted suspensions and in concentrates. , 2006, International journal of pharmaceutics.

[91]  S. Yamamura,et al.  Glassy state of pharmaceuticals. II. Bioinequivalence of glassy and crystalline indomethacin. , 1987, Chemical & pharmaceutical bulletin.

[92]  Keith P. Johnston,et al.  Coaxial nozzle for control of particle morphology in precipitation with a compressed fluid antisolvent , 1997 .

[93]  F. Liu,et al.  Paclitaxel nanocrystals for overcoming multidrug resistance in cancer. , 2010, Molecular pharmaceutics.

[94]  Elizabeth M Topp,et al.  Release from polymeric prodrugs: linkages and their degradation. , 2004, Journal of pharmaceutical sciences.

[95]  H. Palmer,et al.  Formation of Colloidal Dispersions of Organic Materials in Aqueous Media by Solvent Shifting , 2003 .

[96]  R. Müller,et al.  'Stealth' corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. , 2000, Colloids and surfaces. B, Biointerfaces.

[97]  R. Prud’homme,et al.  Association of hydrophobically-modified poly(ethylene glycol) with fusogenic liposomes. , 2003, Biochimica et biophysica acta.

[98]  H. Fessi,et al.  A pilot study of freeze drying of poly(epsilon-caprolactone) nanocapsules stabilized by poly(vinyl alcohol): formulation and process optimization. , 2006, International journal of pharmaceutics.

[99]  Marian E. Gindy,et al.  Generic Method of Preparing Multifunctional Fluorescent Nanoparticles Using Flash NanoPrecipitation , 2009 .

[100]  M. H. El-Shabouri Nanoparticles for improving the dissolution and oral bioavailability of spironolactone, a poorly-soluble drug , 2002 .

[101]  S. Waldman,et al.  The Pharmacokinetics of Nebulized Nanocrystal Budesonide Suspension in Healthy Volunteers , 2004, Journal of clinical pharmacology.

[102]  Daniel W. Pack,et al.  Design and development of polymers for gene delivery , 2005, Nature Reviews Drug Discovery.

[103]  J Molpeceres,et al.  Development of a new cyclosporine formulation based on poly(caprolactone) microspheres , 2002, Journal of microencapsulation.

[104]  J. W. Mullin,et al.  Programmed cooling crystallization of potassium sulphate solutions , 1974 .

[105]  T. L. Rogers,et al.  Development and Characterization of a Scalable Controlled Precipitation Process to Enhance the Dissolution of Poorly Water-Soluble Drugs , 2004, Pharmaceutical Research.

[106]  R. Prud’homme,et al.  Fluorescent polymeric nanoparticles: aggregation and phase behavior of pyrene and amphotericin B molecules in nanoparticle cores. , 2010, Small.