Study of corrosion in biocompatible metals for implants: A review

High requirements in biomedical applications are yet to be met, equally in joint and bone substitution and the healing and renewal of bone weaknesses. The compatibility with the human body is the main precondition for the choice of biomaterials, which should thus have some significant properties that will be durable for use in the body without rejection. This paper concentrates, especially, on biocompatible metals, although there are also biomaterials made of polymers, ceramics, and composite materials. Considerations in selecting materials for biomedical applications such as biocompatibility, the high corrosion and wear resistance, and osseointegration are discussed. This paper reviews the applications of three main types of biocompatible metal, namely, stainless steels, cobalt-chromium alloys, and titanium and its alloys. The corrosion resistance of each alloy is in focus. It can be confidently declared that biocompatible metals will continue to be used as biomaterials in the future with further improvements and new revolutionary bio-functionalities in the use of metals.

[1]  S. M. Ahmadi,et al.  Effects of bio-functionalizing surface treatments on the mechanical behavior of open porous titanium biomaterials. , 2014, Journal of the mechanical behavior of biomedical materials.

[2]  A. C. Guastaldi,et al.  Electrochemical stability and corrosion resistance of Ti-Mo alloys for biomedical applications. , 2009, Acta biomaterialia.

[3]  L. E. Umoru,et al.  Natural Products: A Minefield of Biomaterials , 2012 .

[4]  Thomas J Webster,et al.  Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo. , 2004, Biomaterials.

[5]  Frank Alifui-Segbaya,et al.  The corrosive effects of artificial saliva on cast and rapid manufacture‐produced cobalt chromium alloys , 2013 .

[6]  Y. Okazaki Effect of friction on anodic polarization properties of metallic biomaterials. , 2002, Biomaterials.

[7]  D. Williams,et al.  Conjoint corrosion and wear in titanium alloys. , 1999, Biomaterials.

[8]  S. Matsuya,et al.  Corrosion behavior of pure titanium and titanium alloys in fluoride-containing solutions. , 2001, Dental materials journal.

[9]  Mark Stanford,et al.  Evaluation of the stiffness characteristics of square pore CoCrMo cellular structures manufactured using laser melting technology for potential orthopaedic applications , 2013 .

[10]  Radovan Kovacevic,et al.  Evaluation of titanium alloy fabricated using electron beam melting system for dental applications , 2011 .

[11]  L Cristofolini,et al.  Large-sliding contact elements accurately predict levels of bone-implant micromotion relevant to osseointegration. , 2000, Journal of biomechanics.

[12]  S. Abdalla Growth of Colloidal Nano-particles: New Biomaterials , 2012 .

[13]  David W. Hoeppner,et al.  Fretting in orthopaedic implants: A review , 1994 .

[14]  M. Metikoš-huković,et al.  The Corrosion Behavior of Sputter-Deposited Aluminum-Tungsten Alloys , 2002 .

[15]  K. Rajagopalan Molybdenum: an essential trace element in human nutrition. , 1988, Annual review of nutrition.

[16]  C. Marino,et al.  EIS characterization of a Ti-dental implant in artificial saliva media: dissolution process of the oxide barrier , 2004 .

[17]  A F von Recum,et al.  Educational goals for biomaterials science and engineering: prospective view. , 1995, Journal of applied biomaterials : an official journal of the Society for Biomaterials.

[18]  J. González,et al.  Study of the corrosion behavior of titanium and some of its alloys for biomedical and dental implant applications , 1999 .

[19]  G. W. Hastings,et al.  Book reviewDefinitions in Biomaterials: Progress in Biomedical Engineering 4, Editor: D.F. Williams. Elsevier, Amsterdam, 1987, pp viii + 72, US $63.50 , 1989 .

[20]  M. Neo,et al.  Osteoinduction of porous Ti implants with a channel structure fabricated by selective laser melting. , 2011, Acta biomaterialia.

[21]  Xianglin Shi,et al.  Oxidative stress and metal carcinogenesis. , 2012, Free radical biology & medicine.

[22]  T. Band,et al.  A tribological study of cobalt chromium molybdenum alloys used in metal-on-metal resurfacing hip arthroplasty , 2003 .

[23]  Yoshimitsu Okazaki,et al.  Comparison of metal release from various metallic biomaterials in vitro. , 2005, Biomaterials.

[24]  J. Bronzino,et al.  Biomaterials : Principles and Applications , 2002 .

[25]  K. Harris,et al.  Biocompatible carbohydrate-functionalized stainless steel surfaces: a new method for passivating biomedical implants. , 2011, ACS applied materials & interfaces.

[26]  He Hao,et al.  Porous titanium implants fabricated by metal injection molding , 2009 .

[27]  H. Willert,et al.  Crevice corrosion of cemented titanium alloy stems in total hip replacements. , 1996, Clinical orthopaedics and related research.

[28]  H Hamanaka,et al.  Mechanical properties and corrosion resistance of Ti–6Al–7Nb alloy dental castings , 1998, Journal of materials science. Materials in medicine.

[29]  David J. Mooney,et al.  Inspiration and application in the evolution of biomaterials , 2009, Nature.

[30]  Atsushi Takaichi,et al.  Microstructures and mechanical properties of Co-29Cr-6Mo alloy fabricated by selective laser melting process for dental applications. , 2013, Journal of the mechanical behavior of biomedical materials.

[31]  Joaquim Ciurana,et al.  Study of the Pore Formation on CoCrMo Alloys by Selective Laser Melting Manufacturing Process , 2013 .

[32]  Thierry Gloriant,et al.  Comparative corrosion study of Ti-Ta alloys for dental applications. , 2009, Acta biomaterialia.

[33]  M. Enomoto,et al.  Surface reconstruction associated with α precipitation in a Ti–Mo alloy , 2006 .

[34]  S. Rajeswari,et al.  Investigation of failures in stainless steel orthopaedic implant devices: fatigue failure due to improper fixation of a compression bone plate , 1994 .

[35]  T. Ebel,et al.  Metallurgical and mechanical properties of Ti–24Nb–4Zr–8Sn alloy fabricated by metal injection molding , 2014 .

[36]  J. Breme,et al.  Evaluation of the haemocompatibility of titanium based biomaterials. , 2002, Biomolecular engineering.

[37]  Hsueh-Chuan Hsu,et al.  Structure and grindability of cast Ti–5Cr–xFe alloys , 2009 .

[38]  F. Calignano,et al.  Direct fabrication of joints based on direct metal laser sintering in aluminum and titanium alloys , 2014 .

[39]  N. Kurgan Effect of porosity and density on the mechanical and microstructural properties of sintered 316L stainless steel implant materials , 2014 .

[40]  Yulin Hao,et al.  Manufacture by selective laser melting and mechanical behavior of a biomedical Ti–24Nb–4Zr–8Sn alloy , 2011 .

[41]  F. D'Angelo,et al.  Seven to Twelve Year Results with Versys ET Cementless Stem. A Retrospective Study of 225 Cases , 2010, Hip international : the journal of clinical and experimental research on hip pathology and therapy.

[42]  A. F. Recum Handbook of biomaterials evaluation: Scientific, technical, and clinical testing of implant materials , 1986 .

[43]  H Meier,et al.  The biocompatibility of dense and porous Nickel-Titanium produced by selective laser melting. , 2013, Materials science & engineering. C, Materials for biological applications.

[44]  Qizhi Chen,et al.  Elastomeric biomaterials for tissue engineering , 2013 .

[45]  A. Kobayashi,et al.  Surface modification of 316L stainless steel with magnetron sputtered TiN/VN nanoscale multilayers for bio implant applications , 2012, Journal of Materials Science: Materials in Medicine.

[46]  B. Kasemo,et al.  Surface science aspects on inorganic biomaterials , 1986 .

[47]  A. C. Guastaldi,et al.  Electrochemical behavior of Ti–Mo alloys applied as biomaterial , 2008 .

[48]  Raghuvir Singh,et al.  Corrosion degradation and prevention by surface modification of biometallic materials , 2007, Journal of materials science. Materials in medicine.

[49]  David F. Williams Biofunctionality and Biocompatibility , 2006 .

[50]  J. Galante,et al.  Metal release and excretion from cementless titanium alloy total knee replacements. , 1999, Clinical orthopaedics and related research.

[51]  J. Duh,et al.  Biocompatibility of a titanium–aluminum nitride film coating on a dental alloy , 2004 .

[52]  D. Mantovani,et al.  Shape Memory Materials for Biomedical Applications , 2002 .

[53]  K. Zhou,et al.  Microstructures and mechanical behavior of PM Ti-Mo alloy , 2003 .

[54]  M. Grant,et al.  Biocompatibility evaluation in vitro. Part II: Functional expression of human and animal osteoblasts on the biomaterials , 2001 .

[55]  B. Rydevik,et al.  Osseointegration in skeletal reconstruction and rehabilitation: a review. , 2001, Journal of rehabilitation research and development.

[56]  Hsueh-Chuan Hsu,et al.  Mechanical properties and deformation behavior of cast binary Ti–Cr alloys , 2009 .

[57]  Saied Nouri Khorasani,et al.  Effect of Surface Treatment and Metallic Coating on Corrosion Behavior and Biocompatibility of Surgical 316L Stainless Steel Implant , 2012 .

[58]  Sergey V. Dorozhkin,et al.  Bioceramics of calcium orthophosphates. , 2010, Biomaterials.

[59]  G. Rondelli Corrosion resistance tests on NiTi shape memory alloy. , 1996, Biomaterials.

[60]  Baldev Raj,et al.  Corrosion of bio implants , 2003 .

[61]  M. Dadfar,et al.  Effect of TIG welding on corrosion behavior of 316L stainless steel , 2007 .

[62]  Yusheng Shi,et al.  Effects of scan line spacing on pore characteristics and mechanical properties of porous Ti6Al4V implants fabricated by selective laser melting , 2014 .

[63]  J. Fisher,et al.  Macrophages detoxify the genotoxic and cytotoxic effects of surgical cobalt chrome alloy particles but not quartz particles on human cells in vitro. , 2008, Mutation research.

[64]  P. Chu,et al.  Plasma surface modification of titanium for hard tissue replacements , 2004 .

[65]  Buddy D. Ratner,et al.  Biomaterials Science: An Introduction to Materials in Medicine , 1996 .

[66]  K. Kim,et al.  Effect of acidic fluoride solution on β titanium alloy wire , 2005 .

[67]  R. Messer,et al.  Evaluations of metabolic activities as biocompatibility tools: a study of individual ions' effects on fibroblasts. , 1999, Dental materials : official publication of the Academy of Dental Materials.

[68]  D. Williams,et al.  In-vitro corrosion and wear of titanium alloys in the biological environment. , 1996, Biomaterials.

[69]  I. Gurappa Development of appropriate thickness ceramic coatings on 316 L stainless steel for biomedical applications , 2002 .

[70]  H. Toda,et al.  Corrosion resistance and biocompatibility of Ti-Ta alloys for biomedical applications , 2005 .

[71]  M. Stanford,et al.  The potential application of a Cobalt Chrome Molybdenum femoral stem with functionally graded orthotropic structures manufactured using Laser Melting technologies. , 2013, Medical hypotheses.

[72]  O. Harrysson,et al.  Direct metal fabrication of titanium implants with tailored materials and mechanical properties using electron beam melting technology , 2008 .

[73]  Vamsi Krishna Balla,et al.  Design and fabrication of CoCrMo alloy based novel structures for load bearing implants using laser engineered net shaping , 2010 .

[74]  M. Peivandi,et al.  In-body corrosion fatigue failure of a stainless steel orthopaedic implant with a rare collection of different damage mechanisms , 2007 .

[75]  H. Matsumoto,et al.  β to ω phase transformation due to aging in a Ti–Mo alloy deformed in impact compression , 2003 .

[76]  Effect of fluoride ions on Ti6Al4V alloy passivation in lactated Ringer's serum , 2003 .

[77]  N. Pébère,et al.  E.I.S. characterization of protective coatings on aluminium alloys , 1999 .

[78]  P. D. Miller,et al.  Friction and wear properties of titanium , 1958 .

[79]  K. de Groot,et al.  Advanced biomaterials for skeletal tissue regeneration: Instructive and smart functions , 2008 .

[80]  S. Hulbert,et al.  Corrosion of Ti-6A1-4V in simulated body fluids and bovine plasma. , 1972, Journal of biomedical materials research.

[81]  P. Walker,et al.  Effects of aluminum and other cations on the structure of brain and liver chromatin. , 1989, Biochemistry.

[82]  R. Lakes,et al.  Hard Tissue Replacement II: Joints and Teeth , 1992 .

[83]  C. Borțun,et al.  Structural Investigations in CoCrMo(Ti) Welded Dental Alloys , 2014 .

[84]  M. Bell,et al.  The PARAGON stent study: a randomized trial of a new martensitic nitinol stent versus the Palmaz-Schatz stent for treatment of complex native coronary arterial lesions. , 2000, The American journal of cardiology.

[85]  Joon B. Park Biomaterials:An Introduction , 1992 .

[86]  K. Katti,et al.  Biomaterials in total joint replacement. , 2004, Colloids and surfaces. B, Biointerfaces.

[87]  Her-Hsiung Huang Effect of fluoride and albumin concentration on the corrosion behavior of Ti-6Al-4V alloy. , 2003, Biomaterials.

[88]  Noriyuki Hisamori,et al.  The corrosion/wear mechanisms of Ti–6Al–4V alloy for different scratching rates , 2007 .

[89]  J. Yu,et al.  Corrosion fatigue resistances of surgical implant stainless steels and titanium alloy , 1993 .

[90]  Larry L. Hench,et al.  Bioceramics: From Concept to Clinic , 1991 .

[91]  B. Raj,et al.  Influence of microstructure and alloying elements on corrosion behavior of Ti–13Nb–13Zr alloy , 2004 .

[92]  Amit Bandyopadhyay,et al.  Functionally graded Co-Cr-Mo coating on Ti-6Al-4V alloy structures. , 2008, Acta biomaterialia.

[93]  D. Landolt,et al.  A tribo-electrochemical apparatus for in vitro investigation of fretting–corrosion of metallic implant materials , 2002 .

[94]  E. Eisenbarth,et al.  Biocompatibility of β-stabilizing elements of titanium alloys , 2004 .

[95]  Steve Edmondson,et al.  Functionalisation of Ti6Al4V components fabricated using selective laser melting with a bioactive compound. , 2015, Materials science & engineering. C, Materials for biological applications.

[96]  Z. Paszenda,et al.  Corrosion resistance and chemical composition investigations of passive layer on the implants surface of Co-Cr-W-Ni alloy , 2006 .

[97]  S. Pal Mechanical Properties of Biological Materials , 2014 .

[98]  D. F. Williams,et al.  General Concepts of Biocompatibility , 1998 .

[99]  B. Raj,et al.  Corrosion and Microstructural Aspects of Titanium and its Alloys as Orthopaedic Devices , 2003 .

[100]  Orhan Öztürk,et al.  Metal ion release from nitrogen ion implanted CoCrMo orthopedic implant material , 2006 .

[101]  S. Kalainathan,et al.  Characterization studies on plasma sprayed (AT/HA) bi-layered nano ceramics coating on biomedical commercially pure titanium dental implant , 2014 .

[102]  T. Chaturvedi,et al.  An overview of the corrosion aspect of dental implants (titanium and its alloys). , 2009, Indian journal of dental research : official publication of Indian Society for Dental Research.

[103]  R. Sammons Modifying biomaterial surfaces to optimise interactions with bone , 2011 .

[104]  Jie Dong,et al.  Fabrication of graded porous titanium–magnesium composite for load-bearing biomedical applications , 2015 .

[105]  G. Thouas,et al.  Metallic implant biomaterials , 2015 .

[106]  Yoshifumi Naka,et al.  Results of the post-U.S. Food and Drug Administration-approval study with a continuous flow left ventricular assist device as a bridge to heart transplantation: a prospective study using the INTERMACS (Interagency Registry for Mechanically Assisted Circulatory Support). , 2011, Journal of the American College of Cardiology.

[107]  M Navarro,et al.  Biomaterials in orthopaedics , 2008, Journal of The Royal Society Interface.

[108]  J. Scully,et al.  Corrosion and Passivity of Ti-13% Nb-13% Zr in Comparison to Other Biomedical Implant Alloys , 1997 .

[109]  M. Ikeda,et al.  A microstructural study of fatigue fracture in titanium–molybdenum alloys , 1998 .

[110]  H. Rack,et al.  Titanium alloys in total joint replacement--a materials science perspective. , 1998, Biomaterials.

[111]  Y. Okazaki,et al.  Implant Applications of Highly Corrosion-Resistant Ti-15Zr-4Nb-4Ta Alloy , 2002 .

[112]  S. Nagata,et al.  Formation of barrier-type amorphous anodic films on Ti–Mo alloys , 2003 .

[113]  A. Singh,et al.  Ti based biomaterials, the ultimate choice for orthopaedic implants – A review , 2009 .

[114]  J. Galante,et al.  Determinants of stress shielding: design versus materials versus interface. , 1992, Clinical orthopaedics and related research.

[115]  Hsueh-Chuan Hsu,et al.  Structure and grindability of dental Ti―Cr alloys , 2009 .

[116]  R. Ribeiro,et al.  Experimental titanium alloys for dental applications. , 2014, The Journal of prosthetic dentistry.

[117]  Vamsi Krishna Balla,et al.  Fabrication of compositionally and structurally graded Ti-TiO2 structures using laser engineered net shaping (LENS). , 2009, Acta biomaterialia.

[118]  A. A. Zadpoor,et al.  Fatigue behavior of porous biomaterials manufactured using selective laser melting. , 2013, Materials science & engineering. C, Materials for biological applications.

[119]  M. Niinomi Recent titanium R&D for biomedical applications in japan , 1999 .

[120]  C. Cairo,et al.  Production of new titanium alloy for orthopedic implants , 2004 .

[121]  C. Boehlert,et al.  Biocompatibility and mechanical properties of diamond-like coatings on cobalt-chromium-molybdenum steel and titanium-aluminum-vanadium biomedical alloys. , 2010, Journal of biomedical materials research. Part A.

[122]  A. Jayaraman,et al.  The influence of bacteria on the passive film stability of 304 stainless steel , 1999 .

[123]  R Yoda,et al.  Elastomers for biomedical applications. , 1998, Journal of biomaterials science. Polymer edition.

[124]  Mitsuo Niinomi,et al.  Mechanical properties of biomedical titanium alloys , 1998 .

[125]  K. Rie,et al.  Cytocompatibility of Ti-6Al-4V and Ti-5Al-2.5Fe alloys according to three surface treatments, using human fibroblasts and osteoblasts. , 1996, Biomaterials.

[126]  S. Griza,et al.  Study of the porous Ti35Nb alloy processing parameters for implant applications , 2015 .

[127]  T. Hanawa,et al.  9.04 – Failure Processes in Biometallic Materials , 2003 .

[128]  M. Feldman,et al.  Surface modification of cobaltchromiumtungstennickel alloy using octadecyltrichlorosilanes , 2009 .

[129]  Khalil Abdelrazek Khalil,et al.  Processing and mechanical properties of porous 316L stainless steel for biomedical applications , 2007 .

[130]  P. Trumbo,et al.  Dietary reference intakes: vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. , 1998, Journal of the American Dietetic Association.

[131]  E. N. Codaro,et al.  A study on corrosion resistance of the Ti–10Mo experimental alloy after different processing methods , 2004 .

[132]  Raghuvir Singh,et al.  Laser Surface Modification of Ti—6Al—4V: Wear and Corrosion Characterization in Simulated Biofluid , 2006, Journal of biomaterials applications.

[133]  A. I. Muñoz,et al.  Effect of thermal treatment and applied potential on the electrochemical behaviour of CoCrMo biomedical alloy , 2009 .

[134]  Hsueh-Chuan Hsu,et al.  Structure, mechanical properties and grindability of dental Ti–10Zr–X alloys , 2009 .

[135]  G. Goch,et al.  The Design and Manufacture of Biomedical Surfaces , 2007 .

[136]  Shing‐Jong Lin,et al.  Effect of surface oxide properties on corrosion resistance of 316L stainless steel for biomedical applications , 2004 .

[137]  Satendra Kumar,et al.  Corrosion behaviour of Ti-15Mo alloy for dental implant applications. , 2008, Journal of dentistry.

[138]  S. Tor,et al.  In vitro behavior of sintered powder injection molded Ti-6Al-4V/HA. , 2002, Journal of biomedical materials research.

[139]  M. Brayda-Bruno,et al.  Evaluation of Systemic Metal Diffusion after Spinal Pedicular Fixation with Titanium Alloy and Stainless Steel System: A 36-month Experimental Study in Sheep , 2001, The International journal of artificial organs.

[140]  C. Ju,et al.  Structure and properties of cast binary Ti-Mo alloys. , 1999, Biomaterials.

[141]  P. Uggowitzer,et al.  MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants. , 2009, Nature materials.

[142]  J. Galante,et al.  Metal Release in Patients Who Have Had a Primary Total Hip Arthroplasty. A Prospective, Controlled, Longitudinal Study* , 1998, The Journal of bone and joint surgery. American volume.

[143]  M. Nakagawa,et al.  Effect of Fluoride Concentration and pH on Corrosion Behavior of Titanium for Dental Use , 1999, Journal of dental research.

[144]  K. Geckeler,et al.  Dental implant materials: Surface modification and interface phenomena† , 1996 .

[145]  M. J. Wagner,et al.  ANTIBACTERIAL ACTIVITY OF DENTAL IMPLANT METALS , 1992, Implant dentistry.

[146]  S. Ramakrishna,et al.  Biomedical applications of polymer-composite materials: a review , 2001 .

[147]  A. Lefranc,et al.  Premature mortality measure: Comparison of deaths before 65 years of age and expected years of life lost , 2008 .

[148]  T. Webster,et al.  Increased endothelial and vascular smooth muscle cell adhesion on nanostructured titanium and CoCrMo , 2006, International journal of nanomedicine.

[149]  J. Meyer,et al.  Corrosion behavior of a welded stainless-steel orthopedic implant. , 2001, Biomaterials.

[150]  F. O'Brien Biomaterials & scaffolds for tissue engineering , 2011 .

[151]  David F. Williams On the nature of biomaterials. , 2009, Biomaterials.

[152]  Djordje Vukelic,et al.  A Comparative Analysis of the Corrosive Effect of Artificial Saliva of Variable pH on DMLS and Cast Co-Cr-Mo Dental Alloy , 2014, Materials.

[153]  S. Rajeswari,et al.  Failures in stainless steel orthopaedic implant devices: A survey , 1995 .

[154]  B Vamsi Krishna,et al.  Low stiffness porous Ti structures for load-bearing implants. , 2007, Acta biomaterialia.

[155]  U. K. Mudali,et al.  Corrosion Science and Technology: Mechanism, Mitigation and Monitoring , 2008 .

[156]  G. Cheng,et al.  Corrosion and Electrochemical Behavior of 316L Stainless Steel in Sulfate-reducing and Iron-oxidizing Bacteria Solutions * , 2006 .

[157]  Shivakumar Raman,et al.  Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM). , 2010, Journal of the mechanical behavior of biomedical materials.

[158]  P. J. Thompson,et al.  Assessment of wrought ASTM F1058 cobalt alloy properties for permanent surgical implants. , 1997, Journal of biomedical materials research.

[159]  S. Nag,et al.  Characterization of novel borides in Ti–Nb–Zr–Ta + 2B metal-matrix composites , 2009 .

[160]  A. A. Zadpoor,et al.  Crystal structure and nanotopographical features on the surface of heat-treated and anodized porous titanium biomaterials produced using selective laser melting , 2014 .