SYNERGY BETWEEN THEORY AND EXPERIMENT AS APPLIED TO H/D EXCHANGE ACTIVITY ASSAYS IN [Fe]H2ase ACTIVE SITE MODELS

[1]  Gene-Hsiang Lee,et al.  Dinuclear iron(II)-cyanocarbonyl complexes linked by two/three bridging ethylthiolates: relevance to the active site of [Fe] hydrogenases. , 2003, Inorganic chemistry.

[2]  Xuan Zhao,et al.  The organometallic active site of [Fe]hydrogenase: Models and entatic states , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[3]  R. H. Holm,et al.  Speculative synthetic chemistry and the nitrogenase problem , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[4]  M. Darensbourg,et al.  Requirements for functional models of the iron hydrogenase active site: D2/H2O exchange activity in ((mu-SMe)(mu-pdt)[Fe(CO)2(PMe3)]2+)[BF4-]. , 2003, Inorganic chemistry.

[5]  M. Darensbourg,et al.  Activation of alkenes and H2 by [Fe]-H2ase model complexes. , 2003, Journal of the American Chemical Society.

[6]  Zhipan Liu,et al.  Mechanism of H2 metabolism on Fe-only hydrogenases , 2002 .

[7]  M. Darensbourg,et al.  Catalysis of H(2)/D(2) scrambling and other H/D exchange processes by [Fe]-hydrogenase model complexes. , 2002, Inorganic chemistry.

[8]  Zhipan Liu,et al.  A density functional theory study on the active center of Fe-only hydrogenase: characterization and electronic structure of the redox states. , 2002, Journal of the American Chemical Society.

[9]  L. De Gioia,et al.  DFT investigation of structural, electronic, and catalytic properties of diiron complexes related to the [2Fe](H) subcluster of Fe-only hydrogenases. , 2002, Inorganic chemistry.

[10]  J. C. Yarbrough,et al.  H/D exchange reactions in dinuclear iron thiolates as activity assay models of Fe-H2ase. , 2001, Journal of the American Chemical Society.

[11]  Hongxiang Li,et al.  Diiron Azadithiolates as Models for the Iron‐Only Hydrogenase Active Site: Synthesis, Structure, and Stereoelectronics , 2001 .

[12]  M. Hall,et al.  Modeling the active sites in metalloenzymes. 3. Density functional calculations on models for [Fe]-hydrogenase: structures and vibrational frequencies of the observed redox forms and the reaction mechanism at the Diiron Active Center. , 2001, Journal of the American Chemical Society.

[13]  H. Fan,et al.  A capable bridging ligand for Fe-only hydrogenase: density functional calculations of a low-energy route for heterolytic cleavage and formation of dihydrogen. , 2001, Journal of the American Chemical Society.

[14]  V. Fernández,et al.  Crystallographic and FTIR spectroscopic evidence of changes in Fe coordination upon reduction of the active site of the Fe-only hydrogenase from Desulfovibrio desulfuricans. , 2001, Journal of the American Chemical Society.

[15]  G. Wächtershäuser Life as We Don't Know It , 2000, Science.

[16]  B. J. Lemon,et al.  Photochemistry at the Active Site of the Carbon Monoxide Inhibited Form of the Iron-Only Hydrogenase (CpI) , 2000 .

[17]  D. Sellmann,et al.  [Ni(NHPnPr3)(`S3')], the First Nickel Thiolate Complex Modeling the Nickel Cysteinate Site and Reactivity of [NiFe] Hydrogenase , 2000 .

[18]  R. Morris,et al.  Acidic Dicationic Iron(II) Dihydrogen Complexes and Compounds Related by H(2) Substitution. , 1999, Inorganic chemistry.

[19]  T. Rauchfuss,et al.  First Generation Analogues of the Binuclear Site in the Fe-Only Hydrogenases: Fe2(μ-SR)2(CO)4(CN)22- , 1999 .

[20]  B. J. Lemon,et al.  Binding of exogenously added carbon monoxide at the active site of the iron-only hydrogenase (CpI) from Clostridium pasteurianum. , 1999, Biochemistry.

[21]  N. Yasuoka,et al.  Removal of the bridging ligand atom at the Ni-Fe active site of [NiFe] hydrogenase upon reduction with H2, as revealed by X-ray structure analysis at 1.4 A resolution. , 1999, Structure.

[22]  X Vernede,et al.  The crystal structure of a reduced [NiFeSe] hydrogenase provides an image of the activated catalytic center. , 1999, Structure.

[23]  J. Fontecilla-Camps,et al.  Desulfovibrio desulfuricans iron hydrogenase: the structure shows unusual coordination to an active site Fe binuclear center. , 1999, Structure.

[24]  B J Lemon,et al.  X-ray crystal structure of the Fe-only hydrogenase (CpI) from Clostridium pasteurianum to 1.8 angstrom resolution. , 1998, Science.

[25]  N. Yasuoka,et al.  Unusual ligand structure in Ni-Fe active center and an additional Mg site in hydrogenase revealed by high resolution X-ray structure analysis. , 1997, Structure.

[26]  A. L. Lacey,et al.  Structure of the [Nife] Hydrogenase Active Site: Evidence for Biologically Uncommon Fe Ligands , 1996 .

[27]  Marc Couty,et al.  Basis sets for transition metals: Optimized outer p functions , 1996, J. Comput. Chem..

[28]  Michel Frey,et al.  Crystal structure of the nickel–iron hydrogenase from Desulfovibrio gigas , 1995, Nature.

[29]  S. Albracht Nickel hydrogenases: in search of the active site. , 1994, Biochimica et biophysica acta.

[30]  G. Frenking,et al.  A set of d-polarization functions for pseudo-potential basis sets of the main group elements AlBi and f-type polarization functions for Zn, Cd, Hg , 1993 .

[31]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[32]  Peter Pulay,et al.  Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations , 1990 .

[33]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[34]  P. Treichel,et al.  Reactions of [Me2SSMe]BF4 with organometallic complexes having metalmetal bonds , 1989 .

[35]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[36]  M. Cowie,et al.  Novel anionic rearrangements in hexacarbonyldiiron complexes of chelating organosulfur ligands , 1987 .

[37]  R. Mathieu,et al.  Protonation of the metal-metal bond in [.mu.-(SCH3)Fe(CO)2L]2 complexes (L = P (CH3)3-x (C6H5)x). Experimental evidence of the variation of nucleophilicity of the metal-metal bond with donor properties of phosphorus ligands , 1976 .

[38]  D. Darensbourg,et al.  Synthesis, spectral properties, and reactions of manganese and rhenium pentacarbonyl phosphine and phosphite cation derivatives and related complexes , 1975 .

[39]  R. Ditchfield,et al.  Self-consistent perturbation theory of diamagnetism , 1974 .

[40]  T. Yagi Solubilization, purification and properties of particulate hydrogenase from Desulfovibrio vulgaris. , 1970, Journal of biochemistry.

[41]  T. H. Dunning Gaussian Basis Functions for Use in Molecular Calculations. III. Contraction of (10s6p) Atomic Basis Sets for the First‐Row Atoms , 1970 .

[42]  D. Rittenberg,et al.  The Mechanism of Action of the Enzyme Hydrogenase1 , 1954 .

[43]  F. London,et al.  Théorie quantique des courants interatomiques dans les combinaisons aromatiques , 1937 .

[44]  P. Spacu,et al.  Über Metallcarbonyle. XXVI. Einwirkung organischer Schwefelverbindungen auf die Carbonyle von Eisen und Kobalt , 1937 .

[45]  J. Yudkin,et al.  The Decomposition of Sodium Formate by Bacterium coli in the Presence of Heavy Water , 1934 .

[46]  I. Dance Structural variability of the active site of Fe-only hydrogenase and its hydrogenated forms , 1999 .

[47]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi , 1985 .

[48]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations , 1984 .

[49]  C. A. Ward,et al.  Hydrogen as a fuel , 1983 .

[50]  H. Schaefer Methods of Electronic Structure Theory , 1977 .