Solving BSDE with Adaptive Control Variate

We present and analyze an algorithm to solve numerically BSDEs based on Picard's iterations and on a sequential control variate technique. Its convergence is geometric. Moreover, the solution provided by our algorithm is regular both w.r.t. time and space.

[1]  Adam Krzyzak,et al.  A Distribution-Free Theory of Nonparametric Regression , 2002, Springer series in statistics.

[2]  V. Bally,et al.  Weak Solutions for SPDEs and Backward Doubly Stochastic Differential Equations , 2001 .

[3]  S. Peng,et al.  Reflected solutions of backward SDE's, and related obstacle problems for PDE's , 1997 .

[4]  G. Pagès,et al.  Error analysis of the optimal quantization algorithm for obstacle problems , 2003 .

[5]  X. Mao,et al.  Stochastic Differential Equations and Applications , 1998 .

[6]  B. Bouchard,et al.  Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations , 2004 .

[7]  Céline Labart,et al.  Solving BSDE with adaptive control variate. A note on the rate of convergence of the operator P^k , 2009 .

[8]  S. Menozzi,et al.  A Forward-Backward Stochastic Algorithm For Quasi-Linear PDEs , 2006, math/0603250.

[9]  Céline Labart,et al.  Sharp estimates for the convergence of the density of the Euler scheme in small time , 2008 .

[10]  Sylvain Maire,et al.  Sequential Control Variates for Functionals of Markov Processes , 2005, SIAM J. Numer. Anal..

[11]  René Carmona,et al.  Generalizing the Black-Scholes Formula to Multivariate Contingent Claims , 2005 .

[12]  D. Aronson,et al.  Bounds for the fundamental solution of a parabolic equation , 1967 .

[13]  S. Peng,et al.  Backward Stochastic Differential Equations in Finance , 1997 .

[14]  Christian Bender,et al.  Time discretization and Markovian iteration for coupled FBSDEs , 2008, 0801.3203.

[15]  W. Härdle,et al.  Applied Nonparametric Regression , 1991 .

[16]  S. Peng,et al.  Backward stochastic differential equations and quasilinear parabolic partial differential equations , 1992 .

[17]  O. A. Ladyzhenskai︠a︡,et al.  Linear and Quasi-linear Equations of Parabolic Type , 1995 .

[18]  Nizar Touzi,et al.  A Probabilistic Numerical Method for Fully Nonlinear Parabolic PDEs , 2009, 0905.1863.

[19]  Robert Denk,et al.  A forward scheme for backward SDEs , 2007 .

[20]  E. Gobet,et al.  A regression-based Monte Carlo method to solve backward stochastic differential equations , 2005, math/0508491.

[21]  J. Yong,et al.  Solving forward-backward stochastic differential equations explicitly — a four step scheme , 1994 .

[22]  Alain Bensoussan,et al.  Applications des Inequations Varia-tionnelles en Controle Stochastique , 1978 .