Input-Position-Restricted Models of Language Acceptors

Machines of various types are studied with some restriction on the moves that can be made either on or before the end of the input. For example, for machine models such as deterministic reversal-bounded multicounter machines, one restriction is the class of all machines that do not subtract from any counters before the end the input. Similar restrictions are defined on different combinations of stores with many machine models (nondeterministic and deterministic), and their families studied.

[1]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[2]  Oscar H. Ibarra,et al.  One-reversal counter machines and multihead automata: Revisited , 2011, Theor. Comput. Sci..

[3]  Oscar H. Ibarra,et al.  Visibly Pushdown Automata and Transducers with Counters , 2016, Fundam. Informaticae.

[4]  Oscar H. Ibarra,et al.  Reversal-Bounded Multicounter Machines and Their Decision Problems , 1978, JACM.

[5]  Martin Kutrib,et al.  Deterministic Stack Transducers , 2017, Int. J. Found. Comput. Sci..

[6]  Oscar H. Ibarra,et al.  Characterizations of Bounded semilinear Languages by One-Way and Two-Way Deterministic Machines , 2012, Int. J. Found. Comput. Sci..

[7]  Jean Berstel,et al.  Context-Free Languages and Pushdown Automata , 1997, Handbook of Formal Languages.

[8]  Michaël Cadilhac,et al.  Affine Parikh automata , 2012, RAIRO Theor. Informatics Appl..

[9]  Oscar H. Ibarra,et al.  On the containment and equivalence problems for two-way transducers , 2012, Theor. Comput. Sci..

[10]  Eitan M. Gurari,et al.  The Complexity of Decision Problems for Finite-Turn Multicounter Machines , 1981, J. Comput. Syst. Sci..

[11]  Oscar H. Ibarra,et al.  The effect of end-markers on counter machines and commutativity , 2016, Theor. Comput. Sci..

[12]  Seymour Ginsburg,et al.  Deterministic Context Free Languages , 1966, Inf. Control..

[13]  守屋 悦朗,et al.  J.E.Hopcroft, J.D. Ullman 著, "Introduction to Automata Theory, Languages, and Computation", Addison-Wesley, A5変形版, X+418, \6,670, 1979 , 1980 .

[14]  Michaël Cadilhac,et al.  Bounded Parikh Automata , 2012, Int. J. Found. Comput. Sci..

[15]  Tero Harju,et al.  Some Decision Problems Concerning Semilinearity and Commutation , 2002, J. Comput. Syst. Sci..

[16]  Oscar H. Ibarra,et al.  On Store Languages of Language Acceptors , 2017, Theor. Comput. Sci..