A unified approach to SIC-POVMs and MUBs
暂无分享,去创建一个
[1] A. Vourdas. Galois quantum systems , 2005 .
[2] Markus Grassl. Tomography of Quantum States in Small Dimensions , 2005, Electron. Notes Discret. Math..
[3] Andrew G. Glen,et al. APPL , 2001 .
[4] a SU(2) Recipe for Mutually Unbiased Bases , 2006, quant-ph/0601092.
[5] Stefan Weigert. Simple Minimal Informationally Complete Measurements for Qudits , 2006 .
[6] State space structure and entanglement of rotationally invariant spin systems , 2005, quant-ph/0506224.
[7] W. D. Muynck. Foundations of Quantum Mechanics, an Empiricist Approach , 2002 .
[8] Arthur O. Pittenger,et al. Mutually Unbiased Bases, Generalized Spin Matrices and Separability , 2003 .
[9] W. Wootters. Quantum Measurements and Finite Geometry , 2004, quant-ph/0406032.
[10] Metod Saniga,et al. Mutually unbiased bases and finite projective planes , 2004 .
[11] Ingemar Bengtsson,et al. Mutually Unbiased Bases and the Complementarity Polytope , 2005, Open Syst. Inf. Dyn..
[12] Joseph M. Renes,et al. Symmetric informationally complete quantum measurements , 2003, quant-ph/0310075.
[13] G. Grenet,et al. On the SU2 unit tensor , 1980 .
[14] E. B. Davies,et al. Information and quantum measurement , 1978, IEEE Trans. Inf. Theory.
[15] J. Schwinger. UNITARY OPERATOR BASES. , 1960, Proceedings of the National Academy of Sciences of the United States of America.
[16] John T. Lewis,et al. An operational approach to quantum probability , 1970 .
[17] D. M. Appleby. SIC-POVMs and the Extended Clifford Group , 2004 .
[18] C. Fuchs,et al. Unknown Quantum States: The Quantum de Finetti Representation , 2001, quant-ph/0104088.
[19] G. Racah,et al. Theory of Complex Spectra. IV , 1942 .
[20] P. Oscar Boykin,et al. A New Proof for the Existence of Mutually Unbiased Bases , 2002, Algorithmica.
[21] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[22] D. M. Appleby. Symmetric informationally complete–positive operator valued measures and the extended Clifford group , 2005 .
[23] Freeman J. Dyson,et al. Irreducible Tensorial Sets , 1960 .
[24] I. D. Ivonovic. Geometrical description of quantal state determination , 1981 .
[25] L. Ballentine,et al. Quantum Theory: Concepts and Methods , 1994 .
[26] W. Wootters. A Wigner-function formulation of finite-state quantum mechanics , 1987 .