Watt-scale 50-MHz source of single-cycle waveform-stable pulses in the molecular fingerprint region.

We report a coherent mid-infrared (MIR) source with a combination of broad spectral coverage (6-18 μm), high repetition rate (50 MHz), and high average power (0.5 W). The waveform-stable pulses emerge via intrapulse difference-frequency generation (IPDFG) in a GaSe crystal, driven by a 30-W-average-power train of 32-fs pulses spectrally centered at 2 μm, delivered by a fiber-laser system. Electro-optic sampling (EOS) of the waveform-stable MIR waveforms reveals their single-cycle nature, confirming the excellent phase matching both of IPDFG and of EOS with 2-μm pulses in GaSe.

[1]  W. Schmidt,et al.  Signatures of transient Wannier-Stark localization in bulk gallium arsenide , 2018, Nature Communications.

[2]  J. Limpert,et al.  High-power frequency comb at 2  μm wavelength emitted by a Tm-doped fiber laser system. , 2018, Optics letters.

[3]  G. Cerullo,et al.  Single-cycle multiterahertz transients with peak fields above 10 MV/cm. , 2010, Optics letters.

[4]  Ferenc Krausz,et al.  High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate , 2015, Nature Photonics.

[5]  G. Burkard,et al.  Direct sampling of electric-field vacuum fluctuations , 2015, Science.

[6]  Ferenc Krausz,et al.  Multi-mW, few-cycle mid-infrared continuum spanning from 500 to 2250 cm−1 , 2017, Light: Science & Applications.

[7]  F. Stutzki,et al.  Ultrafast thulium fiber laser system emitting more than 1  kW of average power. , 2018, Optics letters.

[8]  Cesar Jauregui,et al.  Watt-scale super-octave mid-infrared intrapulse difference frequency generation , 2018, Light: Science & Applications.

[9]  H. Ehrke,et al.  Single-shot detection and direct control of carrier phase drift of midinfrared pulses. , 2010, Optics letters.

[10]  E. Riedle,et al.  Phase-locked multi-terahertz electric fields exceeding 13  MV/cm at a 190  kHz repetition rate. , 2017, Optics letters.

[11]  F. Tauser,et al.  How many-particle interactions develop after ultrafast excitation of an electron–hole plasma , 2001, Nature.

[12]  Antoni Rogalski,et al.  History of infrared detectors , 2012 .

[13]  G. Gallot,et al.  Electro-optic detection of terahertz radiation , 1999 .

[14]  Konstantin L. Vodopyanov,et al.  Massively parallel sensing of trace molecules and their isotopologues with broadband subharmonic mid-infrared frequency combs , 2018 .

[15]  Cesar Jauregui,et al.  Impact of atmospheric molecular absorption on the temporal and spatial evolution of ultra-short optical pulses. , 2015, Optics express.

[16]  Michael K. Trubetskov,et al.  Electro-optic sampling of near-infrared waveforms , 2016, Nature Photonics.

[17]  Alfred Leitenstorfer,et al.  Ultrabroadband detection of multi-terahertz field transients with GaSe electro-optic sensors: Approaching the near infrared , 2004 .

[18]  Valentin Petrov,et al.  Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals , 2015 .

[19]  Thomas K. Allison,et al.  Molecular fingerprinting with bright, broadband infrared frequency combs , 2018 .

[20]  V. Pervak,et al.  All-solid-state multipass spectral broadening to sub-20  fs. , 2018, Optics letters.

[21]  Tobias Kampfrath,et al.  Strongly coupled optical phonons in the ultrafast dynamics of the electronic energy and current relaxation in graphite. , 2005, Physical review letters.

[22]  Parvez I. Haris,et al.  Biological and biomedical infrared spectroscopy. , 2009 .

[23]  F. Stutzki,et al.  Self-compression in a solid fiber to 24 MW peak power with few-cycle pulses at 2 μm wavelength. , 2015, Optics letters.

[24]  S. Silvestri,et al.  Two-optical-cycle pulses in the mid-infrared from an optical parametric amplifier. , 2008, Optics letters.