An embedding theorem and the harnack inequality for nonlinear subelliptic equations
暂无分享,去创建一个
[1] Ronald R. Coifman,et al. Analyse harmonique non-commutative sur certains espaces homogènes : étude de certaines intégrales singulières , 1971 .
[2] J. Moser. On Harnack's theorem for elliptic differential equations† , 1961 .
[3] E. Stein,et al. Estimates for the complex and analysis on the heisenberg group , 1974 .
[4] J. Bony. Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés , 1969 .
[5] Daniel W. Stroock,et al. Long time estimates for the heat kernel associated with a uniformly subelliptic symmetric second order operator , 1988 .
[6] G. Citti,et al. HARNACK'S INEQUALITY FOR SUM OF SQUARES OF VECTOR FIELDS PLUS A POTENTIAL , 1993 .
[7] A. Sánchez-Calle. Fundamental solutions and geometry of the sum of squares of vector fields , 1984 .
[8] E. Stein,et al. Balls and metrics defined by vector fields I: Basic properties , 1985 .
[9] D. Jerison,et al. Estimates for the heat kernel for a sum of squares of vector fields , 1986 .
[10] L. Hörmander. Hypoelliptic second order differential equations , 1967 .
[11] L. Hedberg. On certain convolution inequalities , 1972 .
[12] A. Calderón. Inequalities for the maximal function relative to a metric , 1976 .
[13] John M. Lee,et al. Intrinsic CR normal coordinates and the CR Yamabe problem , 1989 .
[14] D. Gilbarg,et al. Elliptic Partial Differential Equa-tions of Second Order , 1977 .
[15] G. Folland,et al. Subelliptic estimates and function spaces on nilpotent Lie groups , 1975 .
[16] D. Jerison. The Poincaré inequality for vector fields satisfying Hörmander’s condition , 1986 .
[17] E. Lanconelli,et al. Existence and nonexistence results for semilinear equations on the Heisenberg group , 1992 .
[18] John M. Lee,et al. Extremals for the Sobolev inequality on the Heisenberg group and the CR Yamabe problem , 1988 .
[19] E. Stein,et al. Hypoelliptic differential operators and nilpotent groups , 1976 .