An embedding theorem and the harnack inequality for nonlinear subelliptic equations

This article maybe used for research, teaching and private study purposes. Any substantial or systematic reproduction, redistribution , reselling , loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

[1]  Ronald R. Coifman,et al.  Analyse harmonique non-commutative sur certains espaces homogènes : étude de certaines intégrales singulières , 1971 .

[2]  J. Moser On Harnack's theorem for elliptic differential equations† , 1961 .

[3]  E. Stein,et al.  Estimates for the complex and analysis on the heisenberg group , 1974 .

[4]  J. Bony Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés , 1969 .

[5]  Daniel W. Stroock,et al.  Long time estimates for the heat kernel associated with a uniformly subelliptic symmetric second order operator , 1988 .

[6]  G. Citti,et al.  HARNACK'S INEQUALITY FOR SUM OF SQUARES OF VECTOR FIELDS PLUS A POTENTIAL , 1993 .

[7]  A. Sánchez-Calle Fundamental solutions and geometry of the sum of squares of vector fields , 1984 .

[8]  E. Stein,et al.  Balls and metrics defined by vector fields I: Basic properties , 1985 .

[9]  D. Jerison,et al.  Estimates for the heat kernel for a sum of squares of vector fields , 1986 .

[10]  L. Hörmander Hypoelliptic second order differential equations , 1967 .

[11]  L. Hedberg On certain convolution inequalities , 1972 .

[12]  A. Calderón Inequalities for the maximal function relative to a metric , 1976 .

[13]  John M. Lee,et al.  Intrinsic CR normal coordinates and the CR Yamabe problem , 1989 .

[14]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[15]  G. Folland,et al.  Subelliptic estimates and function spaces on nilpotent Lie groups , 1975 .

[16]  D. Jerison The Poincaré inequality for vector fields satisfying Hörmander’s condition , 1986 .

[17]  E. Lanconelli,et al.  Existence and nonexistence results for semilinear equations on the Heisenberg group , 1992 .

[18]  John M. Lee,et al.  Extremals for the Sobolev inequality on the Heisenberg group and the CR Yamabe problem , 1988 .

[19]  E. Stein,et al.  Hypoelliptic differential operators and nilpotent groups , 1976 .