Locomotion gait optimization for a quadruped robot

This article describes the development of a gait optimization system that allows a fast but stable robot quadruped crawl gait. We focus in the development of a quadruped robot walking gait locomotion that combine bio-inspired Central Patterns Generators (CPGs) and Genetic Algorithms (GA). The CPGs are modelled as autonomous differential equations, that generate the necessary limb movement to perform the walking gait, and the Genetic Algorithm perform the search of the CPGs parameters. This approach allows to explicitly specify parameters such as amplitude, offset and frequency of movement and to smoothly modulate the generated trajectories according to changes in these parameters. It is therefore easy to combine the CPG with an optimization method. A genetic algorithm determines the best set of parameters that generates the limbs movements. We intend to obtain a walking gait locomotion that minimizes the vibration and maximizes the wide stability margin and the forward velocity. The experimental results, performed on a simulated Aibo robot, demonstrated that our approach allows low vibration with a high velocity and wide stability margin for a quadruped walking gait locomotion.

[1]  Denis Fisseler,et al.  Learning in a High Dimensional Space: Fast Omnidirectional Quadrupedal Locomotion , 2006, RoboCup.

[2]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[3]  Josef Pauli,et al.  International workshop on evolutionary and reinforcement learning for autonomous robot systems (ERLARS) , 2009 .

[4]  Ludovic Righetti,et al.  Movement generation using dynamical systems : a humanoid robot performing a drumming task , 2006, 2006 6th IEEE-RAS International Conference on Humanoid Robots.

[5]  Peter Stone,et al.  Autonomous Learning of Stable Quadruped Locomotion , 2006, RoboCup.

[6]  Katsuhiko Inagaki,et al.  A gait transition for quadruped walking machine , 1993, Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '93).

[7]  Vítor Matos,et al.  A brainstem-like modulation approach for gait transition in a quadruped robot , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[8]  Masahiro Fujita,et al.  Autonomous evolution of dynamic gaits with two quadruped robots , 2005, IEEE Transactions on Robotics.

[9]  Ludovic Righetti,et al.  Pattern generators with sensory feedback for the control of quadruped locomotion , 2008, 2008 IEEE International Conference on Robotics and Automation.

[10]  Cristina P. Santos,et al.  Postural Control on a Quadruped Robot Using Lateral Tilt: A Dynamical System Approach , 2008, EUROS.

[11]  Olivier Michel,et al.  Cyberbotics Ltd. Webots™: Professional Mobile Robot Simulation , 2004 .

[12]  Manuela M. Veloso,et al.  An evolutionary approach to gait learning for four-legged robots , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[13]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[14]  Thomas Röfer,et al.  Evolutionary Gait-Optimization Using a Fitness Function Based on Proprioception , 2004, RoboCup.

[15]  Huosheng Hu,et al.  Evolving locomotion gaits for quadruped walking robots , 2005, Ind. Robot.

[16]  R. McGhee,et al.  On the stability properties of quadruped creeping gaits , 1968 .

[17]  T. Kobayashi,et al.  A study on adaptive gait transition of quadruped locomotion , 2008, 2008 SICE Annual Conference.

[18]  S. Grillner Locomotion in vertebrates: central mechanisms and reflex interaction. , 1975, Physiological reviews.

[19]  K. Deb An Efficient Constraint Handling Method for Genetic Algorithms , 2000 .

[20]  Kenneth J. Waldron,et al.  Machines That Walk: The Adaptive Suspension Vehicle , 1988 .

[21]  Olivier Michel,et al.  Cyberbotics Ltd. Webots™: Professional Mobile Robot Simulation , 2004, ArXiv.

[22]  Hyouk Ryeol Choi,et al.  Biologically inspired control of quadruped walking robot , 2009 .

[23]  Kalyanmoy Deb,et al.  Simulated Binary Crossover for Continuous Search Space , 1995, Complex Syst..

[24]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[25]  Peter Stone,et al.  Machine Learning for Fast Quadrupedal Locomotion , 2004, AAAI.

[26]  Freyr Hardarson,et al.  Stability analysis and synthesis of statically balanced walking for quadruped robots , 2002 .

[27]  S. Grillner Neurobiological bases of rhythmic motor acts in vertebrates. , 1985, Science.

[28]  William T. B. Uther,et al.  Automatic Gait Optimisation for Quadruped Robots , 2003 .