Study the low-temperature SCR property of M-doped (M=Ni, Cr, Co, Se, Sn) MnO2(100) through density functional theory (DFT): Improvement of sulfur poisoning resistance

[1]  Honghong Yi,et al.  Novel Co– or Ni–Mn binary oxide catalysts with hydroxyl groups for NH3–SCR of NOx at low temperature , 2018, Applied Surface Science.

[2]  R. Palkovits,et al.  Nitrogen oxide removal over hydrotalcite-derived mixed metal oxides , 2016 .

[3]  J. Xu,et al.  Rational design and in situ fabrication of MnO2@NiCo2O4 nanowire arrays on Ni foam as high-performance monolith de-NOx catalysts , 2015 .

[4]  P. Smirniotis,et al.  Influence of elevated surface texture hydrated titania on Ce-doped Mn/TiO2 catalysts for the low-temperature SCR of NOx under oxygen-rich conditions , 2015 .

[5]  S. Kureti,et al.  Global kinetic modelling of the NH3 oxidation on Fe/BEA zeolite , 2015 .

[6]  S. C. Parker,et al.  Surface properties of α-MnO2: relevance to catalytic and supercapacitor behaviour , 2014 .

[7]  J. Wilcox,et al.  Role of WO3 in the Hg Oxidation across the V2O5–WO3–TiO2 SCR Catalyst: A DFT Study , 2013 .

[8]  M. Maqbool,et al.  Ceria added Sb-V2O5/TiO2 catalysts for low temperature NH3 SCR: Physico-chemical properties and catalytic activity , 2013 .

[9]  Meinhard Schwefer,et al.  Kinetics of the NO/NO2 equilibrium reaction over an iron zeolite catalyst , 2013 .

[10]  Di Wang,et al.  Characterization of Ceria’s Interaction with NOx and NH3 , 2013 .

[11]  J. Hao,et al.  Design strategies for development of SCR catalyst: improvement of alkali poisoning resistance and novel regeneration method. , 2012, Environmental science & technology.

[12]  Qin Zhong,et al.  Promotional effect of F-doped V2O5–WO3/TiO2 catalyst for NH3-SCR of NO at low-temperature , 2012 .

[13]  T. Andreu,et al.  Synthesis of Ceria–Zirconia Nanocrystals with Improved Microstructural Homogeneity and Oxygen Storage Capacity by Hydrolytic Sol–Gel Process in Coordinating Environment , 2012 .

[14]  Xiaolai Wang,et al.  Nonaqueous synthesis, characterization and catalytic activity of ceria nanorods , 2012 .

[15]  P. Smirniotis,et al.  Nickel-doped Mn/TiO2 as an efficient catalyst for the low-temperature SCR of NO with NH3: Catalytic evaluation and characterizations , 2012 .

[16]  W. Han,et al.  Manganese doped CeO2–WO3 catalysts for the selective catalytic reduction of NOx with NH3: An experimental and theoretical study , 2012 .

[17]  Hong He,et al.  Influence of sulfation on iron titanate catalyst for the selective catalytic reduction of NOx with NH3 , 2011 .

[18]  B. Shen,et al.  Iron-doped Mn-Ce/TiO2 catalyst for low temperature selective catalytic reduction of NO with NH3. , 2010, Journal of environmental sciences.

[19]  Maofa Ge,et al.  Enhanced activity of tungsten modified CeO2/TiO2 for selective catalytic reduction of NOx with ammonia , 2010 .

[20]  Maofa Ge,et al.  Promotional Effect of Ce-doped V2O5-WO3/TiO2 with Low Vanadium Loadings for Selective Catalytic Reduction of NOx by NH3 , 2009 .

[21]  O. Kröcher,et al.  The State of the Art in Selective Catalytic Reduction of NOx by Ammonia Using Metal‐Exchanged Zeolite Catalysts , 2008 .

[22]  Parag A. Deshpande,et al.  Selective Catalytic Reduction of NOx: Mechanistic Perspectives on the Role of Base Metal and Noble Metal Ion Substitution , 2008 .

[23]  M. S. Hegde,et al.  Low-Temperature Selective Catalytic Reduction of NO with NH3 over Ti0.9M0.1O2-δ (M = Cr, Mn, Fe, Co, Cu) , 2008 .

[24]  Fei Teng,et al.  Effect of Phase Structure of MnO2 Nanorod Catalyst on the Activity for CO Oxidation , 2008 .

[25]  Pullur Anil Kumar,et al.  SO2 resistant antimony promoted V2O5/TiO2 catalyst for NH3-SCR of NOx at low temperatures , 2008 .

[26]  V. Grassian,et al.  Catalytic reduction of NO2 in nanocrystalline NaY zeolite , 2005 .

[27]  T. Bredow,et al.  Reaction Mechanism of the Selective Catalytic Reduction of NO with NH3 and O2 to N2 and H2O , 2004 .

[28]  R. T. Yang,et al.  Performance and kinetics study for low-temperature SCR of NO with NH3 over MnOx–CeO2 catalyst , 2003 .

[29]  P. Smirniotis,et al.  Low-Temperature Selective Catalytic Reduction (SCR) of NO with NH3 by Using Mn, Cr, and Cu Oxides Supported on Hombikat TiO2. , 2001, Angewandte Chemie.

[30]  B. Delley From molecules to solids with the DMol3 approach , 2000 .

[31]  G. Marbán,et al.  Low temperature selective catalytic reduction of NO over modified activated carbon fibres , 2000 .

[32]  Guido Busca,et al.  Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: A review , 1998 .

[33]  E. Tronconi,et al.  Dynamic Investigation of the Role of the Surface Sulfates in NOx Reduction and SO2 Oxidation over V2O5−WO3/TiO2 Catalysts , 1998 .

[34]  B. Delley An all‐electron numerical method for solving the local density functional for polyatomic molecules , 1990 .

[35]  B. Liedberg,et al.  An infrared and electrical conductance study of V2O5/SIO2-TIO2 catalysts active for the reduction of NO by NH3 , 1989 .

[36]  W. Lipscomb,et al.  The synchronous-transit method for determining reaction pathways and locating molecular transition states , 1977 .

[37]  Kenichi Fukui,et al.  A Molecular Orbital Theory of Reactivity in Aromatic Hydrocarbons , 1952 .