A stabilized 3-D co-rotational formulation for geometrically nonlinear analysis of multi-layered composite shells

Abstract This paper presents a continuum-based shear-deformable finite element formulation for geometrically nonlinear analysis of thick layered composite shells. The proposed variational formulation is based on an assumed strain method. From a kinematical viewpoint displacements and rotations are assumed finite while strains are infinitesimal. The model is then cast in a co-rotational framework which is derived consistently from the updated Lagrangian method. Close relationship between the co-rotational procedure and the underlying updated Lagrangian procedure is presented to highlight the efficiency of the method for application to composite shell analysis. Numerical examples are presented to demonstrate the accuracy and the range of applicability of the proposed formulation.

[1]  P. Manach,et al.  Analysis of orthotropic behavior in convected coordinate frames , 1999 .

[2]  M. Crisfield,et al.  Dynamics of 3-D co-rotational beams , 1997 .

[3]  Anthony N. Palazotto,et al.  Large-rotation snap-through buckling in laminated cylindrical panels , 1991 .

[4]  Taehyo Park,et al.  Postbuckling analysis of composite panels with imperfection damage , 1998 .

[5]  Satya N. Atluri,et al.  A quasi-conforming triangular laminated composite shell element based on a refined first-order theory , 1994 .

[6]  Ahmed K. Noor,et al.  Assessment of Shear Deformation Theories for Multilayered Composite Plates , 1989 .

[7]  Rakesh K. Kapania,et al.  A survey of recent shell finite elements , 2000 .

[8]  J. Argyris,et al.  An efficient and locking-free flat anisotropic plate and shell triangular element , 1994 .

[9]  J. B. Kennedy,et al.  Nonlinear Behavior of Symmetrically Laminated Plates , 1975 .

[10]  N. J. Pagano,et al.  Interlaminar Stresses in Composite Laminates Under Uniform Axial Extension , 1970 .

[11]  A. Noor,et al.  Assessment of Computational Models for Multilayered Composite Shells , 1990 .

[12]  Wing Kam Liu,et al.  A multiple-quadrature eight-node hexahedral finite element for large deformation elastoplastic analysis , 1998 .

[13]  Thomas J. R. Hughes,et al.  Nonlinear finite element analysis of shells: Part I. three-dimensional shells , 1981 .

[14]  C. Rankin,et al.  An element independent corotational procedure for the treatment of large rotations , 1986 .

[15]  Tadahiko Kawai,et al.  Analysis of large deflection of plates by the finite element method , 1969 .

[16]  R. A. Uras,et al.  Finite element stabilization matrices-a unification approach , 1985 .

[17]  M. Crisfield,et al.  A FINITE ELEMENT FORMULATION FOR 3‐D CONTINUA USING THE CO‐ROTATIONAL TECHNIQUE , 1996 .

[18]  Jerrold E. Marsden,et al.  On the rotated stress tensor and the material version of the Doyle-Ericksen formula , 1984 .

[19]  Ted Belytschko,et al.  Multiple quadrature underintegrated finite elements , 1994 .

[20]  A. Noor,et al.  Assessment of computational models for sandwich panels and shells , 1995 .

[21]  Rakesh K. Kapania,et al.  Static, free vibration and thermal analysis of composite plates and shells using a flat triangular shell element , 1996 .

[22]  Nicholas J. Pagano,et al.  Interlaminar response of composite materials , 1989 .

[23]  M. W. Chernuka,et al.  A simple four-noded corotational shell element for arbitrarily large rotations , 1994 .

[24]  B. J. Hsieh,et al.  Non-Linear Transient Finite Element Analysis with Convected Co--ordinates , 1973 .

[25]  S. Atluri,et al.  Rotations in computational solid mechanics , 1995 .

[26]  T. R. Hughes,et al.  Mathematical foundations of elasticity , 1982 .

[27]  Satya N. Atluri,et al.  Structural Integrity & Durability , 1997 .

[28]  J. C. Simo,et al.  On the Variational Foundations of Assumed Strain Methods , 1986 .

[29]  J. C. Simo,et al.  On a stress resultant geometrically exact shell model. Part III: computational aspects of the nonlinear theory , 1990 .

[30]  Arif Masud,et al.  Finite-Element Formulation for Analysis of Laminated Composites , 1999 .