Efficient Face-Based Non-Split Connectivity Compression for Quad and Triangle-Quad Meshes

In this paper we present an efficient face-based connectivity coding technique for the special class of quadrilateral and the hybrid triangular-quadrilateral meshes. This work extends the main ideas of non-split encoding presented by the first contribution of the authors (Khattab, Abd El-Latif, Abdel Wahab and Tolba, 2007) for triangle meshes and improves over the compression results provided so far for existing face-based connectivity compression techniques. It achieves an average compression ratio of 2.17 bits per quad and per vertex for simple quadrilateral meshes and bit rates of 1.84 bits per polygon and 1.85 bits per vertex for the simple hybrid triangle-quad meshes.

[1]  Martin Isenburg,et al.  Face fixer: compressing polygon meshes with properties , 2000, SIGGRAPH.

[2]  Mohamed F. Tolba,et al.  An enhanced edgebreaker compression algorithm for the connectivity of triangular meshes , 2007, GRAPP.

[3]  M. Isenburg Compressing Polygon Mesh Connectivity with Degree Duality Prediction , 2002, Graphics Interface.

[4]  Craig Gotsman,et al.  Triangle Mesh Compression , 1998, Graphics Interface.

[5]  Craig Gotsman,et al.  Efficient coding of non-triangular mesh connectivity , 2000, Proceedings the Eighth Pacific Conference on Computer Graphics and Applications.

[6]  Pierre Alliez,et al.  Angle‐Analyzer: A Triangle‐Quad Mesh Codec , 2002, Comput. Graph. Forum.

[7]  Mike M. Chow Optimized geometry compression for real-time rendering , 1997 .

[8]  Michael Deering,et al.  Geometry compression , 1995, SIGGRAPH.

[9]  Asish Mukhopadhyay,et al.  Encoding Quadrilateral Meshes , 2003, CCCG.

[10]  Pierre Alliez,et al.  Near-Optimal Connectivity Encoding of 2-Manifold , 2006 .

[11]  Jarek Rossignac,et al.  Wrap&Zip decompression of the connectivity of triangle meshes compressed with Edgebreaker , 1999, Comput. Geom..

[12]  Martin Isenburg,et al.  Spirale Reversi: Reverse Decoding of the Edgebreaker Encoding , 1999, CCCG.

[13]  F. Frances Yao,et al.  Computational Geometry , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[14]  Pierre Alliez,et al.  Recent advances in compression of 3D meshes , 2005, 2005 13th European Signal Processing Conference.

[15]  Jarek Rossignac,et al.  Connectivity Compression for Irregular Quadrilateral Meshes , 2000, ArXiv.

[16]  Pierre Alliez,et al.  Valence‐Driven Connectivity Encoding for 3D Meshes , 2001, Comput. Graph. Forum.

[17]  Asish Mukhopadhyay,et al.  Encoding Quadrilateral Meshes in 2.40 bits per Vertex , 2004, ICVGIP.

[18]  Pierre Alliez,et al.  Near-Optimal Connectivity Encoding of 2-Manifold Polygon Meshes , 2002, Graph. Model..

[19]  Craig Gotsman,et al.  Efficient Coding of Nontriangular Mesh Connectivity , 2001, Graph. Model..

[20]  Jarek Rossignac,et al.  Edgebreaker: Connectivity Compression for Triangle Meshes , 1999, IEEE Trans. Vis. Comput. Graph..

[21]  Wolfgang Straßer,et al.  Real time compression of triangle mesh connectivity , 1998, SIGGRAPH.

[22]  Taku Komura,et al.  Topology matching for fully automatic similarity estimation of 3D shapes , 2001, SIGGRAPH.

[23]  David A. Huffman,et al.  A method for the construction of minimum-redundancy codes , 1952, Proceedings of the IRE.