O‐phospho‐L‐serine modified calcium phosphate cements – material properties, in vitro and in vivo investigations

One of the most important requirements for calcium phosphate bone cements (CPBC) is remodelling in vivo. Degradation of the artificial material and the formation of native new bone matrix have to interdigitate to avoid instability. The remodelling process should not last longer than one year. In this study a CPBC was modified with O‐phospho‐L‐serine (phosphoserine) to improve the material properties in order to speed up remodelling in vivo. The results showed that the modified cements exhibit a nano‐crystalline microstructure with a high specific surface area and increased compressive strength (about 50 %). Metabolic activity of osteoblasts was improved on the modified material. Monocytes were found to be highly activated on the cements containing phosphoserine. In addition the formation of multinucleated giant cells (osteoclast‐like cells) was not impaired on phosphoserine modified cement composites. In vivo experiments in Wistar rats and mini pigs clearly revealed that phosphoserine modified cements showed a higher capability of remodelling compared to the cements without phosphoserine.

[1]  L. Addadi,et al.  The molecular dynamics of osteoclast adhesions. , 2006, European journal of cell biology.

[2]  David Boettiger,et al.  Effect of biomaterial surface properties on fibronectin–α5β1 integrin interaction and cellular attachment , 2006 .

[3]  C. Ning,et al.  Effect of bioactive ceramic dissolution on the mechanism of bone mineralization and guided tissue growth in vitro. , 2006, Journal of biomedical materials research. Part A.

[4]  B. Boyan,et al.  Surface microtopography regulates osteointegration: the role of implant surface microtopography in osteointegration. , 2005, The Alpha omegan.

[5]  H. Zwipp,et al.  Osteocalcin enhances bone remodeling around hydroxyapatite/collagen composites. , 2005, Journal of biomedical materials research. Part A.

[6]  J. Jansen,et al.  Bone inductive properties of rhBMP-2 loaded porous calcium phosphate cement implants inserted at an ectopic site in rabbits. , 2005, Biomaterials.

[7]  H. Zwipp,et al.  Collagen Type I Increases Bone Remodelling around Hydroxyapatite Implants in the Rat Tibia , 2005, Cells Tissues Organs.

[8]  D. Kawahara,et al.  In vitro study on bone formation and surface topography from the standpoint of biomechanics , 2004, Journal of materials science. Materials in medicine.

[9]  Matthew J. Silva,et al.  Marrow Stromal Cells and Osteoclast Precursors Differentially Contribute to TNF-α-Induced Osteoclastogenesis In Vivo1 , 2004, The Journal of Immunology.

[10]  F. Guillemot,et al.  Grafting RGD containing peptides onto hydroxyapatite to promote osteoblastic cells adhesion , 2004, Journal of materials science. Materials in medicine.

[11]  A. Bigi,et al.  Effect of added gelatin on the properties of calcium phosphate cement. , 2004, Biomaterials.

[12]  Takashi Saito,et al.  In vitro apatite induction by osteopontin: interfacial energy for hydroxyapatite nucleation on osteopontin. , 2004, Journal of biomedical materials research. Part A.

[13]  D E Macdonald,et al.  Osteoblast‐like cell adhesion to bone sialoprotein peptides , 2004, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[14]  Kimimitsu Oda,et al.  A histological evaluation on self-setting α-tricalcium phosphate applied in the rat bone cavity , 2004 .

[15]  M. Buggy,et al.  Bone cements and fillers: A review , 2003, Journal of materials science. Materials in medicine.

[16]  Quyen Q. Hoang,et al.  Bone recognition mechanism of porcine osteocalcin from crystal structure , 2003, Nature.

[17]  W. Linhart,et al.  [Treatment of metaphyseal bone defects after fractures of the distal radius. Medium-term results using a calcium-phosphate cement (BIOBON)]. , 2003, Der Unfallchirurg.

[18]  J. Rueger,et al.  Therapie des metaphysären Substanzdefektes nach distaler Radiusfraktur , 2003, Der Unfallchirurg.

[19]  B. Schmidt-Rohlfing,et al.  Stimulation of bone formation with an in situ setting tricalcium phosphate/rhBMP-2 composite in rats. , 2003, Journal of biomedical materials research. Part A.

[20]  Ian Krajbich,et al.  Porous polymer scaffolds surface-modified with arginine-glycine-aspartic acid enhance bone cell attachment and differentiation in vitro. , 2003, Journal of biomedical materials research. Part A.

[21]  J. Jansen,et al.  Histological evaluation of the bone response to calcium phosphate cement implanted in cortical bone. , 2003, Biomaterials.

[22]  R. Giardino,et al.  Human Osteopenic Bone‐Derived Osteoblasts: Essential Amino Acids Treatment Effects , 2003, Artificial cells, blood substitutes, and immobilization biotechnology.

[23]  A. Reinstorf,et al.  Influence of osteocalcin and collagen I on the mechanical and biological properties of Biocement D. , 2002, Biomolecular engineering.

[24]  A. Boskey,et al.  Osteopontin Deficiency Increases Mineral Content and Mineral Crystallinity in Mouse Bone , 2002, Calcified Tissue International.

[25]  J. Jansen,et al.  Trabecular bone response to injectable calcium phosphate (Ca-P) cement. , 2002, Journal of biomedical materials research.

[26]  D. Kohn,et al.  Effects of pH on human bone marrow stromal cells in vitro: implications for tissue engineering of bone. , 2002, Journal of biomedical materials research.

[27]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[28]  K. Shakesheff,et al.  Human osteoprogenitor growth and differentiation on synthetic biodegradable structures after surface modification. , 2001, Bone.

[29]  M. Mertig,et al.  Osteocalcin-Controlled Dissolution−Reprecipitation of Calcium Phosphate under Biomimetic Conditions , 2001 .

[30]  C. Rey,et al.  Adsorption of O-Phospho-L-Serine and L-Serine onto Poorly Crystalline Apatite. , 2001, Journal of colloid and interface science.

[31]  M. Pfaffl,et al.  A new mathematical model for relative quantification in real-time RT-PCR. , 2001, Nucleic acids research.

[32]  S. Takeshita,et al.  TNF-alpha induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. , 2000, The Journal of clinical investigation.

[33]  J. Planell,et al.  Evaluation of calcium phosphates and experimental calcium phosphate bone cements using osteogenic cultures. , 2000, Journal of biomedical materials research.

[34]  D. Lacey,et al.  Characterization of osteoclast precursors in human blood. , 2000 .

[35]  D. Scharnweber,et al.  Collagen type I-coating of Ti6Al4V promotes adhesion of osteoblasts. , 2000, Journal of biomedical materials research.

[36]  Maxence Bigerelle,et al.  Qualitative and quantitative study of human osteoblast adhesion on materials with various surface roughnesses. , 2000, Journal of biomedical materials research.

[37]  Michael Mertig,et al.  Biomimetic mineralization of collagen by combined fibril assembly and calcium phosphate formation , 1999 .

[38]  P. Schaffner,et al.  Selektive RGD-vermittelte Adhsion von Osteoblasten an Implantat-Oberflchen , 1999 .

[39]  T. Schildhauer,et al.  Neue Biomaterialien am Skelettsystem , 1999, Der Chirurg.

[40]  J. Wozney,et al.  The effect of recombinant human bone morphogenetic protein-2 on the integration of porous hydroxyapatite implants with bone. , 1998, Journal of biomedical materials research.

[41]  J A Planell,et al.  Osteotransductive bone cements , 1998, Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine.

[42]  A Curtis,et al.  Topographical control of cells. , 1997, Biomaterials.

[43]  A. Rezania,et al.  The detachment strength and morphology of bone cells contacting materials modified with a peptide sequence found within bone sialoprotein. , 1997, Journal of biomedical materials research.

[44]  Misra Interaction of ortho-Phospho-l-serine with Hydroxyapatite: Formation of a Surface Complex , 1997, Journal of colloid and interface science.

[45]  M A Horton,et al.  The alpha v beta 3 integrin "vitronectin receptor". , 1997, The international journal of biochemistry & cell biology.

[46]  P. Hauschka,et al.  Nucleation and inhibition of hydroxyapatite formation by mineralized tissue proteins. , 1996, The Biochemical journal.

[47]  M. Horton Interactions of connective tissue cells with the extracellular matrix. , 1995, Bone.

[48]  G. Hunter,et al.  Modulation of crystal formation by bone phosphoproteins: role of glutamic acid-rich sequences in the nucleation of hydroxyapatite by bone sialoprotein. , 1994, The Biochemical journal.

[49]  J. Lian,et al.  Osteocalcin promotes differentiation of osteoclast progenitors from murine long‐term bone marrow cultures , 1994, Journal of cellular biochemistry.

[50]  W. Grzesik,et al.  Bone matrix RGD glycoproteins: Immunolocalization and interaction with human primary osteoblastic bone cells in vitro , 1994, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[51]  J. Planell,et al.  Formulation and setting times of some calcium orthophosphate cements: a pilot study , 1993 .

[52]  M C Farach-Carson,et al.  Interactions between the bone matrix proteins osteopontin and bone sialoprotein and the osteoclast integrin alpha v beta 3 potentiate bone resorption. , 1993, The Journal of biological chemistry.

[53]  T. Aoba,et al.  Adsorption of phosphoserine onto hydroxyapatite and its inhibitory activity on crystal growth , 1985 .

[54]  K. Donath The diagnostic value of the new method for the study of undecalcified bones and teeth with attached soft tissue (Säge-Schliff (sawing and grinding) technique). , 1985, Pathology, research and practice.

[55]  M. Mohan,et al.  Metal complexes of amino acid phosphate esters , 1978 .

[56]  M. Roth Fluorescence reaction for amino acids. , 1971, Analytical chemistry.

[57]  Dr. R. Mai,et al.  Frei modellierbare Hydroxylapatit-Kollagen-Komposite zur Sanierung ossärer Defekte , 2004, Mund-, Kiefer- und Gesichtschirurgie.

[58]  H. Pistner,et al.  Schnell abbindender Kalziumphosphatzement für die kraniomaxillofaziale Chirurgie , 2004, Mund-, Kiefer- und Gesichtschirurgie.

[59]  J. Planell,et al.  Design of a calcium phosphate bone cement suitable for the fixation of metal endoprostheses , 1997 .