Fiber assignment in wide-field multiobject fiber-fed spectrographs

Abstract. Multiobject spectroscopy is applied in numerous modern astronomical facilities conducting observations of a large number of targets per pointing. Assigning the maximum number of targets to these instruments requires efficient algorithms. We present a simple and effective algorithm, the averaging (Aver) algorithm, to maximize the number of assigned targets for the first few visits of a given field. In comparison to the draining (Dra) algorithm, our algorithm increases the target completeness by 1% to 2% by employing Poisson distributed and real catalogs from the Large Sky Area Multiobject Fiber Spectroscopic Telescope survey. Moreover, our algorithm performs ∼375 times faster than the conventionally applied simulated annealing algorithm and yields a slightly higher completeness. We further optimize the Aver and Dra algorithms by combining the genetic algorithm (GA) and the differential evolution method. The Aver is slightly optimized by this method, whereas the Dra algorithm is improved by 0.9% to 1.6%, suggesting that our proposed Aver algorithm approaches maximum completeness. Furthermore, we find that the GA can optimize the rotation angle with a specially designed fitness function in the case of focal-plane rotation that is expected to be realized in the future, achieving a 1.8% increase in the number of the targets observed. In particular, our Aver algorithm assigns the maximum number of targets within the first few visits.

[1]  Jean-Paul Kneib,et al.  Target-based fiber assignment for large survey spectrographs , 2016, Astronomical Telescopes + Instrumentation.

[2]  S.Cole,et al.  The 2dF Galaxy Redshift Survey: spectra and redshifts , 2001, astro-ph/0106498.

[3]  Chao Zhai,et al.  The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) , 2012 .

[4]  Matthew Colless,et al.  The Taipan Galaxy Survey: Scientific Goals and Observing Strategy , 2017, Publications of the Astronomical Society of Australia.

[5]  P. N. Suganthan,et al.  Differential Evolution: A Survey of the State-of-the-Art , 2011, IEEE Transactions on Evolutionary Computation.

[6]  R. Nichol,et al.  Cosmological constraints from the SDSS luminous red galaxies , 2006, astro-ph/0608632.

[7]  Walter A. Siegmund,et al.  THE MULTI-OBJECT, FIBER-FED SPECTROGRAPHS FOR THE SLOAN DIGITAL SKY SURVEY AND THE BARYON OSCILLATION SPECTROSCOPIC SURVEY , 2012, 1208.2233.

[8]  Ponnuthurai N. Suganthan,et al.  Guest Editorial Special Issue on Differential Evolution , 2011, IEEE Transactions on Evolutionary Computation.

[9]  Heidi Jo Newberg,et al.  LAMOST Experiment for Galactic Understanding and Exploration (LEGUE) — The survey's science plan , 2012, 1206.3578.

[10]  M. B. Tahir,et al.  An overview of Genetic Algorithms , 2003 .

[11]  Keith Shortridge,et al.  Multi-object spectroscopy field configuration by simulated annealing , 2006 .

[12]  Francisco Prada,et al.  A fiber positioner robot for the Gran Telescopio Canarias , 2010, Astronomical Telescopes + Instrumentation.

[13]  Chao Zhai,et al.  A compact optical fiber positioner , 2016, Astronomical Telescopes + Instrumentation.

[14]  Hannes Bleuler,et al.  High density fiber postitioner system for massive spectroscopic surveys , 2018, Monthly Notices of the Royal Astronomical Society.

[15]  Chao Zhai,et al.  Observation planning of LAMOST fiber positioning subsystem and its simulation study , 2003, SPIE Astronomical Telescopes + Instrumentation.

[16]  Scott Smedley,et al.  Target allocation yields for massively multiplexed spectroscopic surveys with fibers , 2014, Astronomical Telescopes and Instrumentation.

[17]  Denis Gillet,et al.  Collision avoidance in next-generation fiber positioner robotic systems for large survey spectrographs , 2013, 1312.1644.

[18]  Francisco Prada,et al.  Fibre assignment in next-generation wide-field spectrographs , 2011, 1103.0988.

[19]  Helmut Meusinger,et al.  ASPECT: A spectra clustering tool for exploration of large spectral surveys , 2012, 1209.3615.

[20]  Chao Zhai,et al.  Study on observation planning of LAMOST focal plane positioning system and its simulation , 2006, SPIE Astronomical Telescopes + Instrumentation.

[21]  Kyler Kuehn,et al.  Field target allocation and routing algorithms for Starbugs , 2014, Astronomical Telescopes and Instrumentation.

[22]  Elaine M. Sadler,et al.  Radio sources in the 6dFGS: local luminosity functions at 1.4 GHz for star-forming galaxies and radio-loud AGN , 2007 .

[23]  Andrew Sheinis,et al.  Sphinx: a massively multiplexed fiber positioner for MSE , 2018, Astronomical Telescopes + Instrumentation.

[24]  W. M. Wood-Vasey,et al.  The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample , 2016, 1607.03155.

[25]  Tony Farrell,et al.  Advances in the Echidna fiber-positioning technology , 2014, Astronomical Telescopes and Instrumentation.

[26]  John I. Bailey,et al.  M2FS: the Michigan/Magellan Fiber System , 2012, Other Conferences.

[27]  Darrell Whitley,et al.  A genetic algorithm tutorial , 1994, Statistics and Computing.

[28]  Stephen A. Smee,et al.  Prime Focus Spectrograph for the Subaru telescope: massively multiplexed optical and near-infrared fiber spectrograph , 2015, 1507.00725.

[29]  Carlos Bacigalupo,et al.  The GALAH survey: observational overview and Gaia DR1 companion , 2016, 1609.02822.

[30]  Uros Seljak,et al.  Imprint of DESI fiber assignment on the anisotropic power spectrum of emission line galaxies , 2016, 1611.05007.

[31]  O. Rabaza,et al.  SIDE: a fiber fed spectrograph for the 10.4 m Gran Telescopio Canarias (GTC) , 2008, Astronomical Telescopes + Instrumentation.

[32]  K. Pan,et al.  The LEGUE high latitude bright survey design for the LAMOST pilot survey , 2012, 1206.3575.

[33]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: power-spectrum analysis of the final data set and cosmological implications , 2005, astro-ph/0501174.

[34]  Kevin Ho,et al.  Expected observing efficiency of the Maunakea Spectroscopic Explorer (MSE) , 2018, Astronomical Telescopes + Instrumentation.

[35]  M. Bouri,et al.  An 8-mm diameter fibre robot positioner for massive spectroscopy surveys , 2014, 1410.4722.

[36]  Hrand Aghazarian,et al.  Developing engineering model Cobra fiber positioners for the Subaru Telescope’s prime focus spectrometer , 2014, Astronomical Telescopes and Instrumentation.