Octapi interactions: self-assembly of a Pd-based [2]catenane driven by eightfold pi interactions.

An unprecedented 2.5 nm array of pi interactions between eight aromatic rings drives the formation of a [2]catenane. Disruption of this array through the use of longer ligands results in the formation of only single, uncatenated rings. The catenated complex is shown to persist in solution alongside its constituent metallomacrocycles.

[1]  S. Batten,et al.  Solvent-Induced Structural Changes in Complexes of 1,2-Bis(3-(3-pyridyl)pyrazolyl)ethane , 2009 .

[2]  D. Schuster,et al.  General method for synthesis of functionalized macrocycles and catenanes utilizing "click" chemistry. , 2008, Journal of the American Chemical Society.

[3]  P. J. Lusby,et al.  Gold(I)-template catenane and rotaxane synthesis. , 2008, Angewandte Chemie.

[4]  D. Sherrington,et al.  Dynamic combinatorial discovery of a [2]-catenane and its guest-induced conversion into a molecular square host. , 2008, Journal of the American Chemical Society.

[5]  J. F. Stoddart,et al.  A reverse donor-acceptor bistable [2]catenane. , 2008, Organic letters.

[6]  Jiuming He,et al.  Palladium(II)-directed self-assembly of dynamic donor-acceptor [2]catenanes. , 2008, Organic letters.

[7]  D. Leigh,et al.  Beyond switches: Rotaxane- and catenane-based synthetic molecular motors , 2008 .

[8]  C. Peinador,et al.  Molecular catenation via metal-directed self-assembly and pi-donor/pi-acceptor interactions: efficient one-pot synthesis, characterization, and crystal structures of [3]catenanes based on Pd or Pt dinuclear metallocycles. , 2007, Journal of the American Chemical Society.

[9]  J. Sauvage,et al.  Synthesis of a bis-macrocycle containing two back-to-back rigidly connected 1,10-phenanthroline units as a central core and its incorporation in a handcuff-like catenane. , 2007, Chemistry.

[10]  M. Jennings,et al.  Reversible formation of a [2]catenane through first- and second-sphere coordination. , 2007, Angewandte Chemie.

[11]  P. Beer,et al.  Anion templated assembly of mechanically interlocked structures. , 2007, Chemical Society reviews.

[12]  J. F. Stoddart,et al.  Toward electrochemically controllable tristable three-station [2]catenanes. , 2007, Chemistry, an Asian journal.

[13]  William A. Goddard,et al.  Meccano on the Nanoscale—A Blueprint for Making Some of the World's Tiniest Machines , 2004 .

[14]  J. F. Stoddart,et al.  Helical chirality in donor-acceptor catenanes. , 2004, Organic letters.

[15]  M. Gunter,et al.  Neutral π-associated porphyrin [2]catenanes , 2003 .

[16]  Vincenzo Balzani,et al.  Molecular Devices and Machines– A Journey into the Nano World , 2003 .

[17]  Laurence Raehm,et al.  Molecular Machines and Motors Based on Transition Metal-Containing Catenanes and Rotaxanes , 2001 .

[18]  Marco Fontani,et al.  Photophysical and Electrochemical Characterisation of the Interactions between Components in Neutral π‐Associated [2]Catenanes , 2000 .

[19]  Jean-Pierre Sauvage,et al.  Transition Metal-Containing Rotaxanes and Catenanes in Motion: Toward Molecular Machines and Motors , 1998 .

[20]  J. Fraser Stoddart,et al.  π–π INTERACTIONS IN SELF‐ASSEMBLY , 1997 .

[21]  J. Davies,et al.  Neutral [2]catenanes from oxidative coupling of π-stackedcomponents , 1997 .

[22]  Katsuyuki Ogura,et al.  Transition-metal-directed assembly of well-defined organic architectures possessing large voids: From macrocycles to [2] catenanes , 1996 .

[23]  M. Fujita,et al.  Quantitative self-assembly of a [2]catenane from two preformed molecular rings , 1994, Nature.

[24]  C. Hunter Synthesis and structure elucidation of a new [2]-catenane , 1992 .

[25]  Christopher A. Hunter,et al.  The nature of .pi.-.pi. interactions , 1990 .