Optimal control of nonlinear systems to given orbits
暂无分享,去创建一个
Alistair I. Mees | Henry D. I. Abarbanel | Igor M. Starobinets | H. Abarbanel | A. Mees | L. Korzinov | L. Korzinov | I. M. Starobinets
[1] Dressler,et al. Controlling chaos using time delay coordinates. , 1992, Physical review letters.
[2] Guanrong Chen. OPTIMAL CONTROL OF CHAOTIC SYSTEMS , 1994 .
[3] A. Mees,et al. On selecting models for nonlinear time series , 1995 .
[4] J. Grizzle,et al. Observer design for nonlinear systems with discrete-time measurements , 1995, IEEE Trans. Autom. Control..
[5] Kok Lay Teo,et al. Geometry of Targeting of Chaotic Systems , 1995 .
[6] N. F. Jr. Hunter,et al. Application of nonlinear time series models to driven systems , 1990 .
[7] Steven H. Strogatz,et al. Nonlinear Dynamics and Chaos , 2024 .
[8] L. Tsimring,et al. The analysis of observed chaotic data in physical systems , 1993 .
[9] Grebogi,et al. Higher-dimensional targeting. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[10] A. N. Sharkovskiĭ. Dynamic systems and turbulence , 1989 .
[11] Arkady Pikovsky,et al. Multistep method for controlling chaos , 1993 .
[12] Ying-Cheng Lai,et al. Controlling chaos , 1994 .
[13] Henry D. I. Abarbanel,et al. Analysis of Observed Chaotic Data , 1995 .
[14] F. Takens. Detecting strange attractors in turbulence , 1981 .
[15] Martin Casdagli,et al. Nonlinear Modeling And Forecasting , 1992 .
[16] G. Siouris,et al. Optimum systems control , 1979, Proceedings of the IEEE.
[17] M. Hirsch,et al. Differential Equations, Dynamical Systems, and Linear Algebra , 1974 .
[18] E. Ott,et al. Controlling Chaotic Dynamical Systems , 1991, 1991 American Control Conference.
[19] Schouten,et al. Experimental control of a chaotic pendulum with unknown dynamics using delay coordinates. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.