Robust quantum gates for open systems via optimal control: Markovian versus non-Markovian dynamics
暂无分享,去创建一个
Sophie Schirmer | Pierre de Fouquieres | Frederik F. Floether | S. Schirmer | P. D. Fouquieres | Frederik Floether
[1] Quantum Zeno-like effect due to competing decoherence mechanisms , 2001, quant-ph/0106137.
[2] C. G. Broyden. The Convergence of a Class of Double-rank Minimization Algorithms 1. General Considerations , 1970 .
[3] H. Risken,et al. Quantum Collapses and Revivals in a Quantized Trap , 1992 .
[4] Correcting the effects of spontaneous emission on cold-trapped ions , 1996, quant-ph/9610031.
[5] D. Dalvit,et al. Decoherence in Bose-Einstein condensates: Towards bigger and better Schrödinger cats , 2000, cond-mat/0001301.
[6] Hsi-Sheng Goan,et al. Optimal control for non-Markovian open quantum systems , 2012, 1203.6128.
[7] G. Roger,et al. Experimental Test of Bell's Inequalities Using Time- Varying Analyzers , 1982 .
[8] S. G. Schirmer,et al. Implementation of fault-tolerant quantum logic gates via optimal control , 2009, 0907.1635.
[9] S. Lloyd,et al. DYNAMICAL SUPPRESSION OF DECOHERENCE IN TWO-STATE QUANTUM SYSTEMS , 1998, quant-ph/9803057.
[10] Artur Ekert,et al. Quantum computers and dissipation , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[11] Encoding a qubit into multilevel subspaces , 2004, quant-ph/0412059.
[12] S. Schirmer,et al. Generating maximal entanglement between non-interacting atoms by collective decay and symmetry breaking , 2010, 1005.2114.
[13] Constantin Brif,et al. Optimal control of quantum gates and suppression of decoherence in a system of interacting two-level particles , 2007, quant-ph/0702147.
[14] T. Monz,et al. An open-system quantum simulator with trapped ions , 2011, Nature.
[15] F K Wilhelm,et al. Optimal control of a qubit coupled to a non-Markovian environment. , 2006, Physical review letters.
[16] H. Rabitz,et al. Decoherence of molecular vibrational wave packets: Observable manifestations and control criteria , 2001 .
[17] J. Ankerhold,et al. Optimal control of open quantum systems: cooperative effects of driving and dissipation. , 2010, Physical review letters.
[18] M. Thorwart,et al. Phonon-induced decoherence and dissipation in donor-based charge qubits , 2006 .
[19] M. Stutzmann,et al. Spin echoes in the charge transport through phosphorus donors in silicon. , 2008, Physical review letters.
[20] S. Schirmer,et al. Efficient algorithms for optimal control of quantum dynamics: the Krotov method unencumbered , 2011, 1103.5435.
[21] D. Deutsch. Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[22] Rotationally induced collapse and revivals of molecular vibrational wavepackets: model for environment-induced decoherence , 2002 .
[23] Constantin Brif,et al. Fidelity of optimally controlled quantum gates with randomly coupled multiparticle environments , 2007, 0712.2935.
[24] Gilles Nogues,et al. Rabi oscillations revival induced by time reversal: a test of mesoscopic quantum coherence. , 2005 .
[25] T. Mossberg,et al. Studies of picosecond collisional dephasing in atomic sodium vapor using broad-bandwidth transient four-wave mixing , 1986 .
[26] J. Kyriakidis,et al. Transient dynamics of confined charges in quantum dots in the sequential tunneling regime , 2009, 0909.2992.
[27] Albert Einstein,et al. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .
[28] H. Sussmann,et al. Control systems on Lie groups , 1972 .
[29] J. Bell. On the Einstein-Podolsky-Rosen paradox , 1964 .
[30] Bich Ha Nguyen. Quantum dynamics of quantum bits , 2011 .
[31] A. A. Budini,et al. Non-Markovian master equations from entanglement with stationary unobserved degrees of freedom , 2004, quant-ph/0412020.
[32] Martin B. Plenio,et al. An introduction to entanglement measures , 2005, Quantum Inf. Comput..
[33] N. Khaneja,et al. Optimal control for generating quantum gates in open dissipative systems , 2006, quant-ph/0609037.
[34] W. Zurek. The Environment, Decoherence and the Transition from Quantum to Classical , 1991 .
[35] A. Gruslys,et al. Comparing, optimizing, and benchmarking quantum-control algorithms in a unifying programming framework , 2010, 1011.4874.
[36] G. Lindblad. On the generators of quantum dynamical semigroups , 1976 .
[37] A. A. Budini. Open quantum system approach to single-molecule spectroscopy , 2009, 0902.4019.
[38] Constantin Brif,et al. Environment-invariant measure of distance between evolutions of an open quantum system , 2009, 0909.0077.
[39] S. Schirmer,et al. Quantum control of two-qubit entanglement dissipation , 2011, 1109.1137.
[40] Reversible and irreversible dynamics of a qubit interacting with a small environment , 2006, quant-ph/0611262.
[41] S. Glaser,et al. Second order gradient ascent pulse engineering. , 2011, Journal of magnetic resonance.
[42] Xiaoting Wang,et al. Contractivity of the Hilbert-Schmidt distance under open-system dynamics , 2009, 0901.4547.