The Critical Role of Golgi Cells in Regulating Spatio-Temporal Integration and Plasticity at the Cerebellum Input Stage

The discovery of the Golgi cell is bound to the foundation of the Neuron Doctrine. Recently, the excitable mechanisms of this inhibitory interneuron have been investigated with modern experimental and computational techniques raising renewed interest for the implications it might have for cerebellar circuit functions. Golgi cells are pacemakers with preferential response frequency and phase-reset in the theta-frequency band and can therefore impose specific temporal dynamics to granule cell responses. Moreover, through their connectivity, Golgi cells determine the spatio-temporal organization of cerebellar activity. Finally, Golgi cells, by controlling granule cell depolarization and NMDA channel unblock, regulate the induction of long-term synaptic plasticity at the mossy fiber – granule cell synapse. Thus, the Golgi cells can exert an extensive control on spatio-temporal signal organization and information storage in the granular layer playing a critical role for cerebellar computation.

[1]  Richard Apps,et al.  The Distribution of Climbing and Mossy Fiber Collateral Branches from the Copula Pyramidis and the Paramedian Lobule: Congruence of Climbing Fiber Cortical Zones and the Pattern of Zebrin Banding within the Rat Cerebellum , 2003, The Journal of Neuroscience.

[2]  Y. Lamarre,et al.  Local field potential oscillations in primate cerebellar cortex during voluntary movement. , 1997, Journal of neurophysiology.

[3]  J. Hámori,et al.  Differentiation of cerebellar mossy fiber synapses in the rat: A quantitative electron microscope study , 1983, The Journal of comparative neurology.

[4]  Ad Aertsen,et al.  Regular Patterns in Cerebellar Purkinje Cell Simple Spike Trains , 2007, PloS one.

[5]  J. Bower,et al.  An active membrane model of the cerebellar Purkinje cell II. Simulation of synaptic responses. , 1994, Journal of neurophysiology.

[6]  James M. Bower,et al.  Tactile Responses in the Granule Cell Layer of Cerebellar Folium Crus IIa of Freely Behaving Rats , 2001, The Journal of Neuroscience.

[7]  Y Yarom,et al.  Patches of synchronized activity in the cerebellar cortex evoked by mossy-fiber stimulation: questioning the role of parallel fibers. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[8]  S. Edgley,et al.  Cerebellar Golgi cells in the rat receive multimodal convergent peripheral inputs via the lateral funiculus of the spinal cord , 2006, The Journal of physiology.

[9]  M. Häusser,et al.  Intersynaptic diffusion of neurotransmitter. , 1997, Trends in neurosciences.

[10]  伊藤 正男 The cerebellum and neural control , 1984 .

[11]  E De Schutter,et al.  Cerebellar Golgi cells in the rat: receptive fields and timing of responses to facial stimulation , 1999, The European journal of neuroscience.

[12]  Henrik Jörntell,et al.  Reciprocal Bidirectional Plasticity of Parallel Fiber Receptive Fields in Cerebellar Purkinje Cells and Their Afferent Interneurons , 2002, Neuron.

[13]  Reinoud Maex,et al.  Weak common parallel fibre synapses explain the loose synchrony observed between rat cerebellar Golgi cells , 2000, The Journal of physiology.

[14]  D. Marr A theory of cerebellar cortex , 1969, The Journal of physiology.

[15]  Thierry Nieus,et al.  LTP regulates burst initiation and frequency at mossy fiber-granule cell synapses of rat cerebellum: experimental observations and theoretical predictions. , 2006, Journal of neurophysiology.

[16]  E. D’Angelo,et al.  Beyond parallel fiber LTD: the diversity of synaptic and non-synaptic plasticity in the cerebellum , 2001, Nature Neuroscience.

[17]  Erik De Schutter,et al.  Parallel Fibers Synchronize Spontaneous Activity in Cerebellar Golgi Cells , 1999, The Journal of Neuroscience.

[18]  Richard Hawkes,et al.  Golgi Cell Dendrites Are Restricted by Purkinje Cell Stripe Boundaries in the Adult Mouse Cerebellar Cortex , 2008, The Journal of Neuroscience.

[19]  Y Shinoda,et al.  The entire trajectory of single climbing and mossy fibers in the cerebellar nuclei and cortex. , 2000, Progress in brain research.

[20]  David Attwell,et al.  Multiple modes of GABAergic inhibition of rat cerebellar granule cells , 2003, The Journal of physiology.

[21]  Stuart G. Cull-Candy,et al.  Single-Channel Properties of Synaptic and Extrasynaptic GABAA Receptors Suggest Differential Targeting of Receptor Subtypes , 1999, The Journal of Neuroscience.

[22]  James M Bower,et al.  The Organization of Cerebellar Cortical Circuitry Revisited , 2002, Annals of the New York Academy of Sciences.

[23]  E. D'Angelo,et al.  Long-Term Potentiation of Intrinsic Excitability at the Mossy Fiber–Granule Cell Synapse of Rat Cerebellum , 2000, The Journal of Neuroscience.

[24]  J. Bower,et al.  Contribution of somatosensory cortex to responses in the rat cerebellar granule cell layer following peripheral tactile stimulation , 1996, Experimental Brain Research.

[25]  M Farrant,et al.  Identification of subunits contributing to synaptic and extrasynaptic NMDA receptors in Golgi cells of the rat cerebellum , 2000, The Journal of physiology.

[26]  Wolf Singer,et al.  Time as coding space? , 1999, Current Opinion in Neurobiology.

[27]  J. Szentágothai,et al.  Quantitative histological analysis of the cerebellar cortex in the cat. I. Number and arrangement in space of the Purkinje cells. , 1971, Brain research.

[28]  C. Mulle,et al.  Kainate receptor-mediated synaptic currents in cerebellar Golgi cells are not shaped by diffusion of glutamate. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[29]  B. Leitch,et al.  Cerebellar Golgi, Purkinje, and basket cells have reduced γ‐aminobutyric acid immunoreactivity in stargazer mutant mice , 2002, The Journal of comparative neurology.

[30]  A. Pérez-Villalba Rhythms of the Brain, G. Buzsáki. Oxford University Press, Madison Avenue, New York (2006), Price: GB £42.00, p. 448, ISBN: 0-19-530106-4 , 2008 .

[31]  S. R. Cajal Textura del Sistema Nervioso del Hombre y de los Vertebrados, 1899–1904 , 2019 .

[32]  Richard Apps,et al.  Precise Spatial Relationships between Mossy Fibers and Climbing Fibers in Rat Cerebellar Cortical Zones , 2006, The Journal of Neuroscience.

[33]  Egidio D'Angelo,et al.  Presynaptic current changes at the mossy fiber-granule cell synapse of cerebellum during LTP. , 2002, Journal of neurophysiology.

[34]  B. Barbour,et al.  Properties of Unitary Granule Cell→Purkinje Cell Synapses in Adult Rat Cerebellar Slices , 2002, The Journal of Neuroscience.

[35]  E. Schutter,et al.  Temporal characteristics of tactile stimuli influence the response profile of cerebellar Golgi cells , 2005, Neuroscience Letters.

[36]  Egidio D'Angelo,et al.  Computational Reconstruction of Pacemaking and Intrinsic Electroresponsiveness in Cerebellar Golgi Cells , 2007, Frontiers in cellular neuroscience.

[37]  Prof. Dr. Sanford L. Palay,et al.  Cerebellar Cortex , 1974, Springer Berlin Heidelberg.

[38]  Erik De Schutter,et al.  Unraveling the cerebellar cortex: Cytology and cellular physiology of large-sized interneurons in the granular layer , 2008, The Cerebellum.

[39]  M. Farrant,et al.  Variations on an inhibitory theme: phasic and tonic activation of GABAA receptors , 2005, Nature Reviews Neuroscience.

[40]  Shigeru Tanaka,et al.  A spiking network model for passage-of-time representation in the cerebellum , 2007, The European journal of neuroscience.

[41]  J. Lisman Long-term potentiation: outstanding questions and attempted synthesis. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[42]  James M Bower,et al.  Correlations between purkinje cell single-unit activity and simultaneously recorded field potentials in the immediately underlying granule cell layer. , 2005, Journal of neurophysiology.

[43]  Y Yarom,et al.  The Olivocerebellar System as a Generator of Temporal Patterns , 2002, Annals of the New York Academy of Sciences.

[44]  François Chapeau-Blondeau,et al.  A neural network model of the cerebellar cortex performing dynamic associations , 1991, Biological Cybernetics.

[45]  E De Schutter,et al.  Precise spike timing of tactile-evoked cerebellar Golgi cell responses: a reflection of combined mossy fiber and parallel fiber activation? , 2000, Progress in brain research.

[46]  S. Dieudonné,et al.  Serotonin-Driven Long-Range Inhibitory Connections in the Cerebellar Cortex , 2000, The Journal of Neuroscience.

[47]  Egidio D'Angelo,et al.  Ionic mechanisms of autorhythmic firing in rat cerebellar Golgi cells , 2006, The Journal of physiology.

[48]  Dai Watanabe,et al.  mGluR2 Postsynaptically Senses Granule Cell Inputs at Golgi Cell Synapses , 2003, Neuron.

[49]  William Wisden,et al.  Adaptive regulation of neuronal excitability by a voltage- independent potassium conductance , 2001, Nature.

[50]  K. Toyama,et al.  Ablation of Cerebellar Golgi Cells Disrupts Synaptic Integration Involving GABA Inhibition and NMDA Receptor Activation in Motor Coordination , 1998, Cell.

[51]  David Kleinfeld,et al.  Active sensation: insights from the rodent vibrissa sensorimotor system , 2006, Current Opinion in Neurobiology.

[52]  N. Hartell,et al.  Differences in Transmission Properties and Susceptibility to Long-Term Depression Reveal Functional Specialization of Ascending Axon and Parallel Fiber Synapses to Purkinje Cells , 2005, The Journal of Neuroscience.

[53]  F. A. Miles,et al.  Long-term adaptive changes in primate vestibuloocular reflex. III. Electrophysiological observations in flocculus of normal monkeys. , 1980, Journal of neurophysiology.

[54]  B. Pakkenberg,et al.  A quantitative study of the human cerebellum with unbiased stereological techniques , 1992, The Journal of comparative neurology.

[55]  E. De Schutter,et al.  Synchronization of golgi and granule cell firing in a detailed network model of the cerebellar granule cell layer. , 1998, Journal of neurophysiology.

[56]  J M Bower,et al.  The Role of Synaptic and Voltage-Gated Currents in the Control of Purkinje Cell Spiking: A Modeling Study , 1997, The Journal of Neuroscience.

[57]  M Lidierth,et al.  The discharges of cerebellar Golgi cells during locomotion in the cat. , 1987, The Journal of physiology.

[58]  J M Bower,et al.  Oscillatory activity in the cerebellar hemispheres of unrestrained rats. , 1998, Journal of neurophysiology.

[59]  M. Häusser,et al.  Integration of quanta in cerebellar granule cells during sensory processing , 2004, Nature.

[60]  G. Dugué,et al.  Target-Dependent Use of Coreleased Inhibitory Transmitters at Central Synapses , 2005, The Journal of Neuroscience.

[61]  R. Angus Silver,et al.  GABA Spillover from Single Inhibitory Axons Suppresses Low-Frequency Excitatory Transmission at the Cerebellar Glomerulus , 2000, The Journal of Neuroscience.

[62]  Javier F. Medina,et al.  Computer simulation of cerebellar information processing , 2000, Nature Neuroscience.

[63]  Thierry Nieus,et al.  Long-term potentiation of synaptic transmission at the mossy fiber-granule cell relay of cerebellum. , 2005, Progress in brain research.

[64]  T. Teyler,et al.  Long-term potentiation. , 1987, Annual review of neuroscience.

[65]  E De Schutter,et al.  Peripheral stimuli excite coronal beams of Golgi cells in rat cerebellar cortex , 2002, Neuroscience.

[66]  Jerry B. Marion,et al.  Experiments and theory , 1963 .

[67]  J. Albus A Theory of Cerebellar Function , 1971 .

[68]  V. Braitenberg,et al.  The detection and generation of sequences as a key to cerebellar function: Experiments and theory , 1997, Behavioral and Brain Sciences.

[69]  Egidio D'Angelo,et al.  Intracellular Calcium Regulation by Burst Discharge Determines Bidirectional Long-Term Synaptic Plasticity at the Cerebellum Input Stage , 2005, The Journal of Neuroscience.

[70]  A. Pestronk Histology of the Nervous System of Man and Vertebrates , 1997, Neurology.

[71]  Egidio D'Angelo,et al.  The Spatial Organization of Long-Term Synaptic Plasticity at the Input Stage of Cerebellum , 2007, The Journal of Neuroscience.

[72]  Erik De Schutter,et al.  Cerebellar Cortex: Computation by Extrasynaptic Inhibition? , 2002, Current Biology.

[73]  R. Silver,et al.  Shunting Inhibition Modulates Neuronal Gain during Synaptic Excitation , 2003, Neuron.

[74]  N. Barmack,et al.  Functions of Interneurons in Mouse Cerebellum , 2008, The Journal of Neuroscience.

[75]  S. Vicini,et al.  Distinct Deactivation and Desensitization Kinetics of Recombinant GABAA Receptors , 1996, Neuropharmacology.

[76]  H. Noda,et al.  Discharges of Purkinje cells and mossy fibres in the cerebellar vermis of the monkey during saccadic eye movements and fixation , 1980, The Journal of physiology.

[77]  Peter Somogyi,et al.  Segregation of Different GABAA Receptors to Synaptic and Extrasynaptic Membranes of Cerebellar Granule Cells , 1998, The Journal of Neuroscience.

[78]  E De Schutter,et al.  Coding in the granular layer of the cerebellum. , 2001, Progress in brain research.

[79]  F. Bloom,et al.  Golgi cells of the cerebellum are inhibited by inferior olive activity , 1981, Brain Research.

[80]  S. Cull-Candy,et al.  Development of a tonic form of synaptic inhibition in rat cerebellar granule cells resulting from persistent activation of GABAA receptors. , 1996, The Journal of physiology.

[81]  K. Doya,et al.  Unsupervised learning of granule cell sparse codes enhances cerebellar adaptive control , 2001, Neuroscience.

[82]  J Szentágothai,et al.  Quantitative histological analysis of the cerebellar cortex in the cat. II. Cell numbers and densities in the granular layer. , 1971, Brain research.

[83]  S. Dieudonné,et al.  Submillisecond kinetics and low efficacy of parallel fibre‐Golgi cell synaptic currents in the rat cerebellum , 1998, The Journal of physiology.

[84]  E. D’Angelo,et al.  Synaptic excitation of individual rat cerebellar granule cells in situ: evidence for the role of NMDA receptors. , 1995, The Journal of physiology.

[85]  S. Dieudonné,et al.  IPSC Kinetics at Identified GABAergic and Mixed GABAergic and Glycinergic Synapses onto Cerebellar Golgi Cells , 2001, The Journal of Neuroscience.

[86]  J. Rawson,et al.  Morphology of parallel fibres in the cerebellar cortex of the rat: An experimental light and electron microscopic study with biocytin , 1994, The Journal of comparative neurology.

[87]  J M Bower,et al.  Congruence of mossy fiber and climbing fiber tactile projections in the lateral hemispheres of the rat cerebellum , 2001, The Journal of comparative neurology.

[88]  Erik De Schutter,et al.  Oscillations in the cerebellar cortex: a prediction of their frequency bands. , 2005, Progress in brain research.

[89]  Egidio D'Angelo,et al.  Fast-Reset of Pacemaking and Theta-Frequency Resonance Patterns in Cerebellar Golgi Cells: Simulations of their Impact In Vivo , 2007, Frontiers in cellular neuroscience.

[90]  Professor Dr. John C. Eccles,et al.  The Cerebellum as a Neuronal Machine , 1967, Springer Berlin Heidelberg.

[91]  Philippe Isope,et al.  Involvement of Presynaptic N-Methyl-D-Aspartate Receptors in Cerebellar Long-Term Depression , 2002, Neuron.

[92]  V Taglietti,et al.  Theta-Frequency Bursting and Resonance in Cerebellar Granule Cells: Experimental Evidence and Modeling of a Slow K+-Dependent Mechanism , 2001, The Journal of Neuroscience.

[93]  J. Hámori,et al.  Quantitative morphology and synaptology of cerebellar glomeruli in the rat , 1988, Anatomy and Embryology.

[94]  Teuvo Kohonen,et al.  Self-Organization and Associative Memory , 1988 .

[95]  R. Shigemoto,et al.  Morphological and neurochemical differentiation of large granular layer interneurons in the adult rat cerebellum , 2001, Neuroscience.

[96]  B. Barrell,et al.  Glutamate spillover suppresses inhibition by activating presynaptic mGluRs , 2000, Nature.

[97]  Chris I. De Zeeuw,et al.  Time windows and reverberating loops: a reverse-engineering approach to cerebellar function , 2008, The Cerebellum.

[98]  Tahl Holtzman,et al.  Different responses of rat cerebellar Purkinje cells and Golgi cells evoked by widespread convergent sensory inputs , 2006, The Journal of physiology.

[99]  D. Rossi,et al.  Spillover-Mediated Transmission at Inhibitory Synapses Promoted by High Affinity α6 Subunit GABAA Receptors and Glomerular Geometry , 1998, Neuron.