Spin-carrier coupling induced ferromagnetism and giant resistivity peak in EuCd$_2$P$_2$

EuCd 2 P 2 is notable for its unconventional transport: upon cooling the metallic resistivity changes slope and begins to increase, ultimately 100-fold, before returning to its metallic value. Surprisingly, this giant peak occurs at 18 K, well above the N´eel temperature ( T N ) of 11.5 K. Using a suite of sensitive probes of magnetism, including resonant x-ray scattering and magneto-optical polarimetry, we have discovered that ferromagnetic order onsets above T N in the temperature range of the resistivity peak. The observation of inverted hysteresis in this regime shows that ferromagnetism is promoted by coupling of localized spins and itinerant carriers. The resulting carrier localization is confirmed by optical conductivity measurements.

[1]  M. Blanco-Rey,et al.  Effect of the valence state on the band magnetocrystalline anisotropy in two-dimensional rare-earth/noble-metal compounds , 2021, Physical Review Research.

[2]  M. Kastner,et al.  Observation of a phase transition within the domain walls of ferromagnetic Co3Sn2S2 , 2021, Nature Communications.

[3]  P. Canfield,et al.  Visualizing band selective enhancement of quasiparticle lifetime in a metallic ferromagnet , 2021, Nature Communications.

[4]  B. Flebus Magnetoresistance driven by the magnetic Berezinskii-Kosterlitz-Thouless transition , 2021, Physical Review B.

[5]  J. Orenstein,et al.  Mapping domain-wall topology in the magnetic Weyl semimetal CeAlSi , 2021, Physical Review B.

[6]  S. Tsirkin,et al.  Unconventional Transverse Transport above and below the Magnetic Transition Temperature in Weyl Semimetal EuCd_{2}As_{2}. , 2021, Physical review letters.

[7]  P. Ryan,et al.  Colossal Magnetoresistance without Mixed Valence in a Layered Phosphide Crystal , 2021, Advanced materials.

[8]  Qc,et al.  Magnetic crystalline-symmetry-protected axion electrodynamics and field-tunable unpinned Dirac cones in EuIn2As2 , 2020, Nature Communications.

[9]  R. Skomski,et al.  Anisotropy and Crystal Field , 2021, Handbook of Magnetism and Magnetic Materials.

[10]  L. Yin,et al.  Single pair of Weyl nodes in the spin-canted structure of EuCd$_2$As$_2$ , 2020, 2012.01555.

[11]  E. Schierle,et al.  Resonant x-ray scattering study of diffuse magnetic scattering from the topological semimetals EuCd2As2 and EuCd2Sb2 , 2020, Physical Review B.

[12]  Lin Zhou,et al.  Manipulating magnetism in the topological semimetal EuCd2As2 , 2020, Physical Review B.

[13]  Shiv Kumar,et al.  In-plane antiferromagnetic moments and magnetic polaron in the axion topological insulator candidate EuIn2As2 , 2019, 1911.01896.

[14]  J. Orenstein,et al.  Three-state nematicity in the triangular lattice antiferromagnet Fe1/3NbS2 , 2019, Nature Materials.

[15]  Yan Sun,et al.  Spin fluctuation induced Weyl semimetal state in the paramagnetic phase of EuCd2As2 , 2019, Science Advances.

[16]  Yulin Chen,et al.  Magnetic exchange induced Weyl state in a semimetal EuCd2Sb2 , 2019, 1903.12532.

[17]  Xi Dai,et al.  Higher-Order Topology of the Axion Insulator EuIn_{2}As_{2}. , 2019, Physical review letters.

[18]  Shuang Jia,et al.  A New Magnetic Topological Quantum Material Candidate by Design , 2019, ACS central science.

[19]  P. Canfield,et al.  Single pair of Weyl fermions in the half-metallic semimetal EuCd2As2 , 2019, Physical Review B.

[20]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[21]  T. Maitra,et al.  First-principles study of electronic structure, transport, and optical properties of EuCd2As2 , 2018, Physical Review B.

[22]  S. Francoual,et al.  Coupling of magnetic order and charge transport in the candidate Dirac semimetal EuCd2As2 , 2018, Physical Review B.

[23]  Rui Yu,et al.  Dirac semimetal in type-IV magnetic space groups , 2018, Physical Review B.

[24]  D. Maslov,et al.  Resistivity Minimum in Highly Frustrated Itinerant Magnets. , 2016, Physical review letters.

[25]  Z. Fisk,et al.  Magnetically driven electronic phase separation in the semimetallic ferromagnet EuB6 , 2012, 1204.6222.

[26]  M. Alouani,et al.  Magnetic anisotropy in Gd, GdN, and GdFe 2 tuned by the energy of gadolinium 4 f states , 2009 .

[27]  F. von Oppen,et al.  Disorder-induced resistive anomaly near ferromagnetic phase transitions. , 2004, Physical review letters.

[28]  Z. Fisk,et al.  Magnetic phase separation in EuB6 detected by muon spin rotation , 2004, cond-mat/0412019.

[29]  R. Ahuja,et al.  Origin of magnetic anisotropy of Gd metal. , 2003, Physical review letters.

[30]  N. Kharchenko The linear magneto-optic effect as a manifestation of a higher order magnetoelectric effect , 1994 .

[31]  V. M. Naumenko,et al.  Magneto-Optical Methods for Investigating the Structure of Antiferromagnetically Ordered Crystals , 1992 .

[32]  V. Eremenko,et al.  Magneto-optics of antiferromagnets , 1987 .

[33]  V. Eremenko,et al.  Birefringence of the antiferromagnetic crystals linear in a magnetic field , 1980 .

[34]  V. Eremenko,et al.  Lowering of the optical class of an antiferromagnetic crystal, induced by a longitudinal magnetic field , 1978 .

[35]  M. Fisher,et al.  Resistive Anomalies at Magnetic Critical Points , 1968 .

[36]  I. Dzyaloshinsky A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics , 1958 .